| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5re |
⊢ 5 ∈ ℝ |
| 2 |
|
5lt9 |
⊢ 5 < 9 |
| 3 |
1 2
|
gtneii |
⊢ 9 ≠ 5 |
| 4 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
| 5 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
| 6 |
4 5
|
neeq12i |
⊢ ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ 9 ≠ 5 ) |
| 7 |
3 6
|
mpbir |
⊢ ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
| 8 |
|
6re |
⊢ 6 ∈ ℝ |
| 9 |
|
6lt9 |
⊢ 6 < 9 |
| 10 |
8 9
|
gtneii |
⊢ 9 ≠ 6 |
| 11 |
|
vscandx |
⊢ ( ·𝑠 ‘ ndx ) = 6 |
| 12 |
4 11
|
neeq12i |
⊢ ( ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 9 ≠ 6 ) |
| 13 |
10 12
|
mpbir |
⊢ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 14 |
|
8re |
⊢ 8 ∈ ℝ |
| 15 |
|
8lt9 |
⊢ 8 < 9 |
| 16 |
14 15
|
gtneii |
⊢ 9 ≠ 8 |
| 17 |
|
ipndx |
⊢ ( ·𝑖 ‘ ndx ) = 8 |
| 18 |
4 17
|
neeq12i |
⊢ ( ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 9 ≠ 8 ) |
| 19 |
16 18
|
mpbir |
⊢ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
| 20 |
7 13 19
|
3pm3.2i |
⊢ ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ) |