Step |
Hyp |
Ref |
Expression |
1 |
|
slt2addd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
slt2addd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
slt2addd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
slt2addd.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
5 |
|
slt2addd.5 |
⊢ ( 𝜑 → 𝐴 <s 𝐶 ) |
6 |
|
slt2addd.6 |
⊢ ( 𝜑 → 𝐵 <s 𝐷 ) |
7 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
8 |
3 2
|
addscld |
⊢ ( 𝜑 → ( 𝐶 +s 𝐵 ) ∈ No ) |
9 |
3 4
|
addscld |
⊢ ( 𝜑 → ( 𝐶 +s 𝐷 ) ∈ No ) |
10 |
1 3 2
|
sltadd1d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐶 +s 𝐵 ) ) ) |
11 |
5 10
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) <s ( 𝐶 +s 𝐵 ) ) |
12 |
2 4 3
|
sltadd2d |
⊢ ( 𝜑 → ( 𝐵 <s 𝐷 ↔ ( 𝐶 +s 𝐵 ) <s ( 𝐶 +s 𝐷 ) ) ) |
13 |
6 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 +s 𝐵 ) <s ( 𝐶 +s 𝐷 ) ) |
14 |
7 8 9 11 13
|
slttrd |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) <s ( 𝐶 +s 𝐷 ) ) |