Metamath Proof Explorer


Theorem slt2addd

Description: Adding both sides of two surreal less-than relations. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses slt2addd.1 ( 𝜑𝐴 No )
slt2addd.2 ( 𝜑𝐵 No )
slt2addd.3 ( 𝜑𝐶 No )
slt2addd.4 ( 𝜑𝐷 No )
slt2addd.5 ( 𝜑𝐴 <s 𝐶 )
slt2addd.6 ( 𝜑𝐵 <s 𝐷 )
Assertion slt2addd ( 𝜑 → ( 𝐴 +s 𝐵 ) <s ( 𝐶 +s 𝐷 ) )

Proof

Step Hyp Ref Expression
1 slt2addd.1 ( 𝜑𝐴 No )
2 slt2addd.2 ( 𝜑𝐵 No )
3 slt2addd.3 ( 𝜑𝐶 No )
4 slt2addd.4 ( 𝜑𝐷 No )
5 slt2addd.5 ( 𝜑𝐴 <s 𝐶 )
6 slt2addd.6 ( 𝜑𝐵 <s 𝐷 )
7 1 2 addscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No )
8 3 2 addscld ( 𝜑 → ( 𝐶 +s 𝐵 ) ∈ No )
9 3 4 addscld ( 𝜑 → ( 𝐶 +s 𝐷 ) ∈ No )
10 1 3 2 sltadd1d ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( 𝐴 +s 𝐵 ) <s ( 𝐶 +s 𝐵 ) ) )
11 5 10 mpbid ( 𝜑 → ( 𝐴 +s 𝐵 ) <s ( 𝐶 +s 𝐵 ) )
12 2 4 3 sltadd2d ( 𝜑 → ( 𝐵 <s 𝐷 ↔ ( 𝐶 +s 𝐵 ) <s ( 𝐶 +s 𝐷 ) ) )
13 6 12 mpbid ( 𝜑 → ( 𝐶 +s 𝐵 ) <s ( 𝐶 +s 𝐷 ) )
14 7 8 9 11 13 slttrd ( 𝜑 → ( 𝐴 +s 𝐵 ) <s ( 𝐶 +s 𝐷 ) )