Metamath Proof Explorer


Theorem sltadd1im

Description: Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd1im ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 → ( 𝐴 +s 𝐶 ) <s ( 𝐵 +s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 addsprop ( ( 𝐶 No 𝐴 No 𝐵 No ) → ( ( 𝐶 +s 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( 𝐴 +s 𝐶 ) <s ( 𝐵 +s 𝐶 ) ) ) )
2 1 3coml ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐶 +s 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( 𝐴 +s 𝐶 ) <s ( 𝐵 +s 𝐶 ) ) ) )
3 2 simprd ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 → ( 𝐴 +s 𝐶 ) <s ( 𝐵 +s 𝐶 ) ) )