Step |
Hyp |
Ref |
Expression |
1 |
|
sleadd2 |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) ) |
2 |
1
|
3com12 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ¬ 𝐵 ≤s 𝐴 ↔ ¬ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) ) |
4 |
|
sltnle |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) ) |
6 |
|
simp3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) |
7 |
|
simp1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) |
8 |
6 7
|
addscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐶 +s 𝐴 ) ∈ No ) |
9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) |
10 |
6 9
|
addscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐶 +s 𝐵 ) ∈ No ) |
11 |
|
sltnle |
⊢ ( ( ( 𝐶 +s 𝐴 ) ∈ No ∧ ( 𝐶 +s 𝐵 ) ∈ No ) → ( ( 𝐶 +s 𝐴 ) <s ( 𝐶 +s 𝐵 ) ↔ ¬ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐶 +s 𝐴 ) <s ( 𝐶 +s 𝐵 ) ↔ ¬ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) ) |
13 |
3 5 12
|
3bitr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 +s 𝐴 ) <s ( 𝐶 +s 𝐵 ) ) ) |