Metamath Proof Explorer


Theorem sltadd2

Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 +s 𝐴 ) <s ( 𝐶 +s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sleadd2 ( ( 𝐵 No 𝐴 No 𝐶 No ) → ( 𝐵 ≤s 𝐴 ↔ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) )
2 1 3com12 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐵 ≤s 𝐴 ↔ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) )
3 2 notbid ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ¬ 𝐵 ≤s 𝐴 ↔ ¬ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) )
4 sltnle ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) )
5 4 3adant3 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ¬ 𝐵 ≤s 𝐴 ) )
6 simp3 ( ( 𝐴 No 𝐵 No 𝐶 No ) → 𝐶 No )
7 simp1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → 𝐴 No )
8 6 7 addscld ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐶 +s 𝐴 ) ∈ No )
9 simp2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → 𝐵 No )
10 6 9 addscld ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐶 +s 𝐵 ) ∈ No )
11 sltnle ( ( ( 𝐶 +s 𝐴 ) ∈ No ∧ ( 𝐶 +s 𝐵 ) ∈ No ) → ( ( 𝐶 +s 𝐴 ) <s ( 𝐶 +s 𝐵 ) ↔ ¬ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) )
12 8 10 11 syl2anc ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐶 +s 𝐴 ) <s ( 𝐶 +s 𝐵 ) ↔ ¬ ( 𝐶 +s 𝐵 ) ≤s ( 𝐶 +s 𝐴 ) ) )
13 3 5 12 3bitr4d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 +s 𝐴 ) <s ( 𝐶 +s 𝐵 ) ) )