Metamath Proof Explorer


Theorem sltaddpos1d

Description: Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltaddpos.1 ( 𝜑𝐴 No )
sltaddpos.2 ( 𝜑𝐵 No )
Assertion sltaddpos1d ( 𝜑 → ( 0s <s 𝐴𝐵 <s ( 𝐵 +s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltaddpos.1 ( 𝜑𝐴 No )
2 sltaddpos.2 ( 𝜑𝐵 No )
3 0sno 0s No
4 3 a1i ( 𝜑 → 0s No )
5 4 1 2 sltadd2d ( 𝜑 → ( 0s <s 𝐴 ↔ ( 𝐵 +s 0s ) <s ( 𝐵 +s 𝐴 ) ) )
6 2 addsridd ( 𝜑 → ( 𝐵 +s 0s ) = 𝐵 )
7 6 breq1d ( 𝜑 → ( ( 𝐵 +s 0s ) <s ( 𝐵 +s 𝐴 ) ↔ 𝐵 <s ( 𝐵 +s 𝐴 ) ) )
8 5 7 bitrd ( 𝜑 → ( 0s <s 𝐴𝐵 <s ( 𝐵 +s 𝐴 ) ) )