Description: Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltaddpos.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
sltaddpos.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
Assertion | sltaddpos1d | ⊢ ( 𝜑 → ( 0s <s 𝐴 ↔ 𝐵 <s ( 𝐵 +s 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltaddpos.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | sltaddpos.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | 0sno | ⊢ 0s ∈ No | |
4 | 3 | a1i | ⊢ ( 𝜑 → 0s ∈ No ) |
5 | 4 1 2 | sltadd2d | ⊢ ( 𝜑 → ( 0s <s 𝐴 ↔ ( 𝐵 +s 0s ) <s ( 𝐵 +s 𝐴 ) ) ) |
6 | 2 | addsridd | ⊢ ( 𝜑 → ( 𝐵 +s 0s ) = 𝐵 ) |
7 | 6 | breq1d | ⊢ ( 𝜑 → ( ( 𝐵 +s 0s ) <s ( 𝐵 +s 𝐴 ) ↔ 𝐵 <s ( 𝐵 +s 𝐴 ) ) ) |
8 | 5 7 | bitrd | ⊢ ( 𝜑 → ( 0s <s 𝐴 ↔ 𝐵 <s ( 𝐵 +s 𝐴 ) ) ) |