Metamath Proof Explorer


Theorem sltaddpos2d

Description: Addition of a positive number increases the sum. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltaddpos.1 ( 𝜑𝐴 No )
sltaddpos.2 ( 𝜑𝐵 No )
Assertion sltaddpos2d ( 𝜑 → ( 0s <s 𝐴𝐵 <s ( 𝐴 +s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sltaddpos.1 ( 𝜑𝐴 No )
2 sltaddpos.2 ( 𝜑𝐵 No )
3 0sno 0s No
4 3 a1i ( 𝜑 → 0s No )
5 4 1 2 sltadd1d ( 𝜑 → ( 0s <s 𝐴 ↔ ( 0s +s 𝐵 ) <s ( 𝐴 +s 𝐵 ) ) )
6 addslid ( 𝐵 No → ( 0s +s 𝐵 ) = 𝐵 )
7 2 6 syl ( 𝜑 → ( 0s +s 𝐵 ) = 𝐵 )
8 7 breq1d ( 𝜑 → ( ( 0s +s 𝐵 ) <s ( 𝐴 +s 𝐵 ) ↔ 𝐵 <s ( 𝐴 +s 𝐵 ) ) )
9 5 8 bitrd ( 𝜑 → ( 0s <s 𝐴𝐵 <s ( 𝐴 +s 𝐵 ) ) )