Metamath Proof Explorer


Theorem sltaddsub2d

Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 28-Feb-2025)

Ref Expression
Hypotheses sltsubadd.1 ( 𝜑𝐴 No )
sltsubadd.2 ( 𝜑𝐵 No )
sltsubadd.3 ( 𝜑𝐶 No )
Assertion sltaddsub2d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) <s 𝐶𝐵 <s ( 𝐶 -s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubadd.1 ( 𝜑𝐴 No )
2 sltsubadd.2 ( 𝜑𝐵 No )
3 sltsubadd.3 ( 𝜑𝐶 No )
4 1 2 addscomd ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) )
5 4 breq1d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) <s 𝐶 ↔ ( 𝐵 +s 𝐴 ) <s 𝐶 ) )
6 2 1 3 sltaddsubd ( 𝜑 → ( ( 𝐵 +s 𝐴 ) <s 𝐶𝐵 <s ( 𝐶 -s 𝐴 ) ) )
7 5 6 bitrd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) <s 𝐶𝐵 <s ( 𝐶 -s 𝐴 ) ) )