Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltdivmulwd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
sltdivmulwd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
sltdivmulwd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
sltdivmulwd.4 | ⊢ ( 𝜑 → 0s <s 𝐶 ) | ||
sltdivmulwd.5 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) | ||
Assertion | sltdivmul2wd | ⊢ ( 𝜑 → ( ( 𝐴 /su 𝐶 ) <s 𝐵 ↔ 𝐴 <s ( 𝐵 ·s 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltdivmulwd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | sltdivmulwd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | sltdivmulwd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
4 | sltdivmulwd.4 | ⊢ ( 𝜑 → 0s <s 𝐶 ) | |
5 | sltdivmulwd.5 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) | |
6 | 1 2 3 4 5 | sltdivmulwd | ⊢ ( 𝜑 → ( ( 𝐴 /su 𝐶 ) <s 𝐵 ↔ 𝐴 <s ( 𝐶 ·s 𝐵 ) ) ) |
7 | 2 3 | mulscomd | ⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) ) |
8 | 7 | breq2d | ⊢ ( 𝜑 → ( 𝐴 <s ( 𝐵 ·s 𝐶 ) ↔ 𝐴 <s ( 𝐶 ·s 𝐵 ) ) ) |
9 | 6 8 | bitr4d | ⊢ ( 𝜑 → ( ( 𝐴 /su 𝐶 ) <s 𝐵 ↔ 𝐴 <s ( 𝐵 ·s 𝐶 ) ) ) |