Metamath Proof Explorer


Theorem sltdivmulwd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1 ( 𝜑𝐴 No )
sltdivmulwd.2 ( 𝜑𝐵 No )
sltdivmulwd.3 ( 𝜑𝐶 No )
sltdivmulwd.4 ( 𝜑 → 0s <s 𝐶 )
sltdivmulwd.5 ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
Assertion sltdivmulwd ( 𝜑 → ( ( 𝐴 /su 𝐶 ) <s 𝐵𝐴 <s ( 𝐶 ·s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1 ( 𝜑𝐴 No )
2 sltdivmulwd.2 ( 𝜑𝐵 No )
3 sltdivmulwd.3 ( 𝜑𝐶 No )
4 sltdivmulwd.4 ( 𝜑 → 0s <s 𝐶 )
5 sltdivmulwd.5 ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
6 4 sgt0ne0d ( 𝜑𝐶 ≠ 0s )
7 1 3 6 5 divsclwd ( 𝜑 → ( 𝐴 /su 𝐶 ) ∈ No )
8 7 2 3 4 sltmul2d ( 𝜑 → ( ( 𝐴 /su 𝐶 ) <s 𝐵 ↔ ( 𝐶 ·s ( 𝐴 /su 𝐶 ) ) <s ( 𝐶 ·s 𝐵 ) ) )
9 1 3 6 5 divscan2wd ( 𝜑 → ( 𝐶 ·s ( 𝐴 /su 𝐶 ) ) = 𝐴 )
10 9 breq1d ( 𝜑 → ( ( 𝐶 ·s ( 𝐴 /su 𝐶 ) ) <s ( 𝐶 ·s 𝐵 ) ↔ 𝐴 <s ( 𝐶 ·s 𝐵 ) ) )
11 8 10 bitrd ( 𝜑 → ( ( 𝐴 /su 𝐶 ) <s 𝐵𝐴 <s ( 𝐶 ·s 𝐵 ) ) )