Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltled.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
sltled.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
sltled.3 | ⊢ ( 𝜑 → 𝐴 <s 𝐵 ) | ||
Assertion | sltled | ⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltled.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | sltled.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | sltled.3 | ⊢ ( 𝜑 → 𝐴 <s 𝐵 ) | |
4 | 1 2 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ) |
5 | sltasym | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴 ) ) | |
6 | 4 3 5 | sylc | ⊢ ( 𝜑 → ¬ 𝐵 <s 𝐴 ) |
7 | slenlt | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) | |
8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) ) |
9 | 6 8 | mpbird | ⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |