Metamath Proof Explorer


Theorem sltled

Description: Surreal less-than implies less-than or equal. (Contributed by Scott Fenton, 16-Feb-2025)

Ref Expression
Hypotheses sltled.1 ( 𝜑𝐴 No )
sltled.2 ( 𝜑𝐵 No )
sltled.3 ( 𝜑𝐴 <s 𝐵 )
Assertion sltled ( 𝜑𝐴 ≤s 𝐵 )

Proof

Step Hyp Ref Expression
1 sltled.1 ( 𝜑𝐴 No )
2 sltled.2 ( 𝜑𝐵 No )
3 sltled.3 ( 𝜑𝐴 <s 𝐵 )
4 1 2 jca ( 𝜑 → ( 𝐴 No 𝐵 No ) )
5 sltasym ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴 ) )
6 4 3 5 sylc ( 𝜑 → ¬ 𝐵 <s 𝐴 )
7 slenlt ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
8 1 2 7 syl2anc ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴 ) )
9 6 8 mpbird ( 𝜑𝐴 ≤s 𝐵 )