Metamath Proof Explorer


Theorem sltmul

Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Assertion sltmul ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ) → ( ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 0sno 0s No
2 1 1 pm3.2i ( 0s No ∧ 0s No )
3 mulsprop ( ( ( 0s No ∧ 0s No ) ∧ ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ) → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) )
4 2 3 mp3an1 ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ) → ( ( 0s ·s 0s ) ∈ No ∧ ( ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) )
5 4 simprd ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ) → ( ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) )