Metamath Proof Explorer


Theorem sltmul12ad

Description: Comparison of the product of two positive surreals. (Contributed by Scott Fenton, 17-Apr-2025)

Ref Expression
Hypotheses sltmul12ad.1 ( 𝜑𝐴 No )
sltmul12ad.2 ( 𝜑𝐵 No )
sltmul12ad.3 ( 𝜑𝐶 No )
sltmul12ad.4 ( 𝜑𝐷 No )
sltmul12ad.5 ( 𝜑 → 0s ≤s 𝐴 )
sltmul12ad.6 ( 𝜑𝐴 <s 𝐵 )
sltmul12ad.7 ( 𝜑 → 0s ≤s 𝐶 )
sltmul12ad.8 ( 𝜑𝐶 <s 𝐷 )
Assertion sltmul12ad ( 𝜑 → ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐷 ) )

Proof

Step Hyp Ref Expression
1 sltmul12ad.1 ( 𝜑𝐴 No )
2 sltmul12ad.2 ( 𝜑𝐵 No )
3 sltmul12ad.3 ( 𝜑𝐶 No )
4 sltmul12ad.4 ( 𝜑𝐷 No )
5 sltmul12ad.5 ( 𝜑 → 0s ≤s 𝐴 )
6 sltmul12ad.6 ( 𝜑𝐴 <s 𝐵 )
7 sltmul12ad.7 ( 𝜑 → 0s ≤s 𝐶 )
8 sltmul12ad.8 ( 𝜑𝐶 <s 𝐷 )
9 1 3 mulscld ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No )
10 2 3 mulscld ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No )
11 2 4 mulscld ( 𝜑 → ( 𝐵 ·s 𝐷 ) ∈ No )
12 1 2 6 sltled ( 𝜑𝐴 ≤s 𝐵 )
13 1 2 3 7 12 slemul1ad ( 𝜑 → ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) )
14 0sno 0s No
15 14 a1i ( 𝜑 → 0s No )
16 15 1 2 5 6 slelttrd ( 𝜑 → 0s <s 𝐵 )
17 3 4 2 16 sltmul2d ( 𝜑 → ( 𝐶 <s 𝐷 ↔ ( 𝐵 ·s 𝐶 ) <s ( 𝐵 ·s 𝐷 ) ) )
18 8 17 mpbid ( 𝜑 → ( 𝐵 ·s 𝐶 ) <s ( 𝐵 ·s 𝐷 ) )
19 9 10 11 13 18 slelttrd ( 𝜑 → ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐷 ) )