Step |
Hyp |
Ref |
Expression |
1 |
|
sltmul12ad.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltmul12ad.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltmul12ad.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltmul12ad.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
5 |
|
sltmul12ad.5 |
⊢ ( 𝜑 → 0s ≤s 𝐴 ) |
6 |
|
sltmul12ad.6 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
7 |
|
sltmul12ad.7 |
⊢ ( 𝜑 → 0s ≤s 𝐶 ) |
8 |
|
sltmul12ad.8 |
⊢ ( 𝜑 → 𝐶 <s 𝐷 ) |
9 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
10 |
2 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No ) |
11 |
2 4
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐷 ) ∈ No ) |
12 |
1 2 6
|
sltled |
⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |
13 |
1 2 3 7 12
|
slemul1ad |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ) |
14 |
|
0sno |
⊢ 0s ∈ No |
15 |
14
|
a1i |
⊢ ( 𝜑 → 0s ∈ No ) |
16 |
15 1 2 5 6
|
slelttrd |
⊢ ( 𝜑 → 0s <s 𝐵 ) |
17 |
3 4 2 16
|
sltmul2d |
⊢ ( 𝜑 → ( 𝐶 <s 𝐷 ↔ ( 𝐵 ·s 𝐶 ) <s ( 𝐵 ·s 𝐷 ) ) ) |
18 |
8 17
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) <s ( 𝐵 ·s 𝐷 ) ) |
19 |
9 10 11 13 18
|
slelttrd |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐷 ) ) |