Metamath Proof Explorer


Theorem sltmul1d

Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses sltmul12d.1 ( 𝜑𝐴 No )
sltmul12d.2 ( 𝜑𝐵 No )
sltmul12d.3 ( 𝜑𝐶 No )
sltmul12d.4 ( 𝜑 → 0s <s 𝐶 )
Assertion sltmul1d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 sltmul12d.1 ( 𝜑𝐴 No )
2 sltmul12d.2 ( 𝜑𝐵 No )
3 sltmul12d.3 ( 𝜑𝐶 No )
4 sltmul12d.4 ( 𝜑 → 0s <s 𝐶 )
5 1 2 3 4 sltmul2d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) <s ( 𝐶 ·s 𝐵 ) ) )
6 1 3 mulscomd ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( 𝐶 ·s 𝐴 ) )
7 2 3 mulscomd ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) )
8 6 7 breq12d ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐶 ) ↔ ( 𝐶 ·s 𝐴 ) <s ( 𝐶 ·s 𝐵 ) ) )
9 5 8 bitr4d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ·s 𝐶 ) <s ( 𝐵 ·s 𝐶 ) ) )