Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 𝐴 ∈ No ) |
2 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 𝐶 ∈ No ) |
3 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 𝐵 ∈ No ) |
4 |
2 3
|
subscld |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐶 -s 𝐵 ) ∈ No ) |
5 |
|
simpl1r |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 0s <s 𝐴 ) |
6 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) |
7 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) |
8 |
6 7
|
posdifsd |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 <s 𝐶 ↔ 0s <s ( 𝐶 -s 𝐵 ) ) ) |
9 |
8
|
biimpa |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 0s <s ( 𝐶 -s 𝐵 ) ) |
10 |
1 4 5 9
|
mulsgt0d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 0s <s ( 𝐴 ·s ( 𝐶 -s 𝐵 ) ) ) |
11 |
1 2 3
|
subsdid |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐴 ·s ( 𝐶 -s 𝐵 ) ) = ( ( 𝐴 ·s 𝐶 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
12 |
10 11
|
breqtrd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 0s <s ( ( 𝐴 ·s 𝐶 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
13 |
1 3
|
mulscld |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
14 |
1 2
|
mulscld |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐴 ·s 𝐶 ) ∈ No ) |
15 |
13 14
|
posdifsd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ↔ 0s <s ( ( 𝐴 ·s 𝐶 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
16 |
12 15
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) |
17 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) |
18 |
17 7
|
mulscld |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ·s 𝐶 ) ∈ No ) |
19 |
|
sltirr |
⊢ ( ( 𝐴 ·s 𝐶 ) ∈ No → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) |
21 |
|
oveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ·s 𝐵 ) = ( 𝐴 ·s 𝐶 ) ) |
22 |
21
|
breq1d |
⊢ ( 𝐵 = 𝐶 → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ↔ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
23 |
22
|
notbid |
⊢ ( 𝐵 = 𝐶 → ( ¬ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ↔ ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
24 |
20 23
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 = 𝐶 → ¬ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
25 |
24
|
con2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) → ¬ 𝐵 = 𝐶 ) ) |
26 |
25
|
imp |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ¬ 𝐵 = 𝐶 ) |
27 |
17 6
|
mulscld |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
28 |
|
sltasym |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( 𝐴 ·s 𝐶 ) ∈ No ) → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) ) |
29 |
27 18 28
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) |
31 |
|
simpl1l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 𝐴 ∈ No ) |
32 |
31
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 𝐴 ∈ No ) |
33 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 𝐵 ∈ No ) |
34 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 𝐶 ∈ No ) |
35 |
33 34
|
subscld |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐵 -s 𝐶 ) ∈ No ) |
36 |
|
simpl1r |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 0s <s 𝐴 ) |
37 |
36
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 0s <s 𝐴 ) |
38 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 0s <s ( 𝐵 -s 𝐶 ) ) |
39 |
32 35 37 38
|
mulsgt0d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 0s <s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) |
40 |
32 33 34
|
subsdid |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) ) |
41 |
40
|
breq2d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 0s <s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ↔ 0s <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) ) ) |
42 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐴 ·s 𝐶 ) ∈ No ) |
43 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
44 |
42 43
|
posdifsd |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ↔ 0s <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) ) ) |
45 |
41 44
|
bitr4d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 0s <s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ↔ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) ) |
46 |
39 45
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) |
47 |
30 46
|
mtand |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ¬ 0s <s ( 𝐵 -s 𝐶 ) ) |
48 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 𝐶 ∈ No ) |
49 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 𝐵 ∈ No ) |
50 |
48 49
|
posdifsd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ( 𝐶 <s 𝐵 ↔ 0s <s ( 𝐵 -s 𝐶 ) ) ) |
51 |
47 50
|
mtbird |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ¬ 𝐶 <s 𝐵 ) |
52 |
|
sltlin |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 <s 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 <s 𝐵 ) ) |
53 |
49 48 52
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ( 𝐵 <s 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 <s 𝐵 ) ) |
54 |
26 51 53
|
ecase23d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 𝐵 <s 𝐶 ) |
55 |
16 54
|
impbida |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 <s 𝐶 ↔ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ) |