| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 𝐴 ∈ No ) |
| 2 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 𝐶 ∈ No ) |
| 3 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 𝐵 ∈ No ) |
| 4 |
2 3
|
subscld |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐶 -s 𝐵 ) ∈ No ) |
| 5 |
|
simpl1r |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 0s <s 𝐴 ) |
| 6 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) |
| 7 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) |
| 8 |
6 7
|
posdifsd |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 <s 𝐶 ↔ 0s <s ( 𝐶 -s 𝐵 ) ) ) |
| 9 |
8
|
biimpa |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 0s <s ( 𝐶 -s 𝐵 ) ) |
| 10 |
1 4 5 9
|
mulsgt0d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 0s <s ( 𝐴 ·s ( 𝐶 -s 𝐵 ) ) ) |
| 11 |
1 2 3
|
subsdid |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐴 ·s ( 𝐶 -s 𝐵 ) ) = ( ( 𝐴 ·s 𝐶 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
| 12 |
10 11
|
breqtrd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → 0s <s ( ( 𝐴 ·s 𝐶 ) -s ( 𝐴 ·s 𝐵 ) ) ) |
| 13 |
1 3
|
mulscld |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 14 |
1 2
|
mulscld |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 15 |
13 14
|
posdifsd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ↔ 0s <s ( ( 𝐴 ·s 𝐶 ) -s ( 𝐴 ·s 𝐵 ) ) ) ) |
| 16 |
12 15
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ 𝐵 <s 𝐶 ) → ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) |
| 17 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) |
| 18 |
17 7
|
mulscld |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 19 |
|
sltirr |
⊢ ( ( 𝐴 ·s 𝐶 ) ∈ No → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ·s 𝐵 ) = ( 𝐴 ·s 𝐶 ) ) |
| 22 |
21
|
breq1d |
⊢ ( 𝐵 = 𝐶 → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ↔ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
| 23 |
22
|
notbid |
⊢ ( 𝐵 = 𝐶 → ( ¬ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ↔ ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
| 24 |
20 23
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 = 𝐶 → ¬ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ) |
| 25 |
24
|
con2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) → ¬ 𝐵 = 𝐶 ) ) |
| 26 |
25
|
imp |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ¬ 𝐵 = 𝐶 ) |
| 27 |
17 6
|
mulscld |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 28 |
|
sltasym |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( 𝐴 ·s 𝐶 ) ∈ No ) → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) ) |
| 29 |
27 18 28
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) ) |
| 30 |
29
|
imp |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ¬ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) |
| 31 |
|
simpl1l |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 𝐴 ∈ No ) |
| 32 |
31
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 𝐴 ∈ No ) |
| 33 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 𝐵 ∈ No ) |
| 34 |
|
simpll3 |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 𝐶 ∈ No ) |
| 35 |
33 34
|
subscld |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐵 -s 𝐶 ) ∈ No ) |
| 36 |
|
simpl1r |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 0s <s 𝐴 ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 0s <s 𝐴 ) |
| 38 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 0s <s ( 𝐵 -s 𝐶 ) ) |
| 39 |
32 35 37 38
|
mulsgt0d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → 0s <s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ) |
| 40 |
32 33 34
|
subsdid |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) = ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) ) |
| 41 |
40
|
breq2d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 0s <s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ↔ 0s <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 42 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 43 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 44 |
42 43
|
posdifsd |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ↔ 0s <s ( ( 𝐴 ·s 𝐵 ) -s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 45 |
41 44
|
bitr4d |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 0s <s ( 𝐴 ·s ( 𝐵 -s 𝐶 ) ) ↔ ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) ) |
| 46 |
39 45
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ∧ 0s <s ( 𝐵 -s 𝐶 ) ) → ( 𝐴 ·s 𝐶 ) <s ( 𝐴 ·s 𝐵 ) ) |
| 47 |
30 46
|
mtand |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ¬ 0s <s ( 𝐵 -s 𝐶 ) ) |
| 48 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 𝐶 ∈ No ) |
| 49 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 𝐵 ∈ No ) |
| 50 |
48 49
|
posdifsd |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ( 𝐶 <s 𝐵 ↔ 0s <s ( 𝐵 -s 𝐶 ) ) ) |
| 51 |
47 50
|
mtbird |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ¬ 𝐶 <s 𝐵 ) |
| 52 |
|
sltlin |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 <s 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 <s 𝐵 ) ) |
| 53 |
49 48 52
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → ( 𝐵 <s 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 <s 𝐵 ) ) |
| 54 |
26 51 53
|
ecase23d |
⊢ ( ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ∧ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) → 𝐵 <s 𝐶 ) |
| 55 |
16 54
|
impbida |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 <s 𝐶 ↔ ( 𝐴 ·s 𝐵 ) <s ( 𝐴 ·s 𝐶 ) ) ) |