Metamath Proof Explorer
Description: Multiplication of both sides of surreal less-than by a positive number.
(Contributed by Scott Fenton, 10-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
sltmul12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
sltmul12d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
sltmul12d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
|
sltmul12d.4 |
⊢ ( 𝜑 → 0s <s 𝐶 ) |
|
Assertion |
sltmul2d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) <s ( 𝐶 ·s 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sltmul12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltmul12d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltmul12d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltmul12d.4 |
⊢ ( 𝜑 → 0s <s 𝐶 ) |
5 |
|
sltmul2 |
⊢ ( ( ( 𝐶 ∈ No ∧ 0s <s 𝐶 ) ∧ 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) <s ( 𝐶 ·s 𝐵 ) ) ) |
6 |
3 4 1 2 5
|
syl211anc |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) <s ( 𝐶 ·s 𝐵 ) ) ) |