Metamath Proof Explorer


Theorem sltmuld

Description: An ordering relationship for surreal multiplication. Compare theorem 8(iii) of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)

Ref Expression
Hypotheses sltmuld.1 ( 𝜑𝐴 No )
sltmuld.2 ( 𝜑𝐵 No )
sltmuld.3 ( 𝜑𝐶 No )
sltmuld.4 ( 𝜑𝐷 No )
sltmuld.5 ( 𝜑𝐴 <s 𝐵 )
sltmuld.6 ( 𝜑𝐶 <s 𝐷 )
Assertion sltmuld ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 sltmuld.1 ( 𝜑𝐴 No )
2 sltmuld.2 ( 𝜑𝐵 No )
3 sltmuld.3 ( 𝜑𝐶 No )
4 sltmuld.4 ( 𝜑𝐷 No )
5 sltmuld.5 ( 𝜑𝐴 <s 𝐵 )
6 sltmuld.6 ( 𝜑𝐶 <s 𝐷 )
7 sltmul ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ) → ( ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) )
8 1 2 3 4 7 syl22anc ( 𝜑 → ( ( 𝐴 <s 𝐵𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) )
9 5 6 8 mp2and ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) )