Step |
Hyp |
Ref |
Expression |
1 |
|
sltmuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltmuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltmuld.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltmuld.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
5 |
|
sltmuld.5 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
6 |
|
sltmuld.6 |
⊢ ( 𝜑 → 𝐶 <s 𝐷 ) |
7 |
|
sltmul |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ( 𝐶 ∈ No ∧ 𝐷 ∈ No ) ) → ( ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) |
8 |
1 2 3 4 7
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 <s 𝐵 ∧ 𝐶 <s 𝐷 ) → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) ) |
9 |
5 6 8
|
mp2and |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐷 ) -s ( 𝐴 ·s 𝐶 ) ) <s ( ( 𝐵 ·s 𝐷 ) -s ( 𝐵 ·s 𝐶 ) ) ) |