Metamath Proof Explorer
Description: Surreal less-than relationship between division and multiplication.
(Contributed by Scott Fenton, 16-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
sltdivmuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
sltdivmuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
sltdivmuld.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
|
sltdivmuld.4 |
⊢ ( 𝜑 → 0s <s 𝐶 ) |
|
Assertion |
sltmuldiv2d |
⊢ ( 𝜑 → ( ( 𝐶 ·s 𝐴 ) <s 𝐵 ↔ 𝐴 <s ( 𝐵 /su 𝐶 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sltdivmuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltdivmuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltdivmuld.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltdivmuld.4 |
⊢ ( 𝜑 → 0s <s 𝐶 ) |
5 |
4
|
sgt0ne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
6 |
3 5
|
recsexd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) |
7 |
1 2 3 4 6
|
sltmuldiv2wd |
⊢ ( 𝜑 → ( ( 𝐶 ·s 𝐴 ) <s 𝐵 ↔ 𝐴 <s ( 𝐵 /su 𝐶 ) ) ) |