Metamath Proof Explorer


Theorem sltmuldiv2d

Description: Surreal less-than relationship between division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses sltdivmuld.1 ( 𝜑𝐴 No )
sltdivmuld.2 ( 𝜑𝐵 No )
sltdivmuld.3 ( 𝜑𝐶 No )
sltdivmuld.4 ( 𝜑 → 0s <s 𝐶 )
Assertion sltmuldiv2d ( 𝜑 → ( ( 𝐶 ·s 𝐴 ) <s 𝐵𝐴 <s ( 𝐵 /su 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 sltdivmuld.1 ( 𝜑𝐴 No )
2 sltdivmuld.2 ( 𝜑𝐵 No )
3 sltdivmuld.3 ( 𝜑𝐶 No )
4 sltdivmuld.4 ( 𝜑 → 0s <s 𝐶 )
5 4 sgt0ne0d ( 𝜑𝐶 ≠ 0s )
6 3 5 recsexd ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
7 1 2 3 4 6 sltmuldiv2wd ( 𝜑 → ( ( 𝐶 ·s 𝐴 ) <s 𝐵𝐴 <s ( 𝐵 /su 𝐶 ) ) )