Metamath Proof Explorer


Theorem sltmuldiv2wd

Description: Surreal less-than relationship between division and multiplication. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltdivmulwd.1 ( 𝜑𝐴 No )
sltdivmulwd.2 ( 𝜑𝐵 No )
sltdivmulwd.3 ( 𝜑𝐶 No )
sltdivmulwd.4 ( 𝜑 → 0s <s 𝐶 )
sltdivmulwd.5 ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
Assertion sltmuldiv2wd ( 𝜑 → ( ( 𝐶 ·s 𝐴 ) <s 𝐵𝐴 <s ( 𝐵 /su 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 sltdivmulwd.1 ( 𝜑𝐴 No )
2 sltdivmulwd.2 ( 𝜑𝐵 No )
3 sltdivmulwd.3 ( 𝜑𝐶 No )
4 sltdivmulwd.4 ( 𝜑 → 0s <s 𝐶 )
5 sltdivmulwd.5 ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
6 1 3 mulscomd ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( 𝐶 ·s 𝐴 ) )
7 6 breq1d ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) <s 𝐵 ↔ ( 𝐶 ·s 𝐴 ) <s 𝐵 ) )
8 1 2 3 4 5 sltmuldivwd ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) <s 𝐵𝐴 <s ( 𝐵 /su 𝐶 ) ) )
9 7 8 bitr3d ( 𝜑 → ( ( 𝐶 ·s 𝐴 ) <s 𝐵𝐴 <s ( 𝐵 /su 𝐶 ) ) )