Step |
Hyp |
Ref |
Expression |
1 |
|
sltdivmulwd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltdivmulwd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltdivmulwd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltdivmulwd.4 |
⊢ ( 𝜑 → 0s <s 𝐶 ) |
5 |
|
sltdivmulwd.5 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) |
6 |
4
|
sgt0ne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
7 |
2 3 6 5
|
divsclwd |
⊢ ( 𝜑 → ( 𝐵 /su 𝐶 ) ∈ No ) |
8 |
1 7 3 4
|
sltmul1d |
⊢ ( 𝜑 → ( 𝐴 <s ( 𝐵 /su 𝐶 ) ↔ ( 𝐴 ·s 𝐶 ) <s ( ( 𝐵 /su 𝐶 ) ·s 𝐶 ) ) ) |
9 |
2 3 6 5
|
divscan1wd |
⊢ ( 𝜑 → ( ( 𝐵 /su 𝐶 ) ·s 𝐶 ) = 𝐵 ) |
10 |
9
|
breq2d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) <s ( ( 𝐵 /su 𝐶 ) ·s 𝐶 ) ↔ ( 𝐴 ·s 𝐶 ) <s 𝐵 ) ) |
11 |
8 10
|
bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) <s 𝐵 ↔ 𝐴 <s ( 𝐵 /su 𝐶 ) ) ) |