Step |
Hyp |
Ref |
Expression |
1 |
|
sltmulneg.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltmulneg.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltmulneg.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltmulneg.4 |
⊢ ( 𝜑 → 𝐶 <s 0s ) |
5 |
1 3
|
mulnegs2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( -us ‘ 𝐶 ) ) = ( -us ‘ ( 𝐴 ·s 𝐶 ) ) ) |
6 |
2 3
|
mulnegs2d |
⊢ ( 𝜑 → ( 𝐵 ·s ( -us ‘ 𝐶 ) ) = ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ) |
7 |
5 6
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐴 ·s ( -us ‘ 𝐶 ) ) <s ( 𝐵 ·s ( -us ‘ 𝐶 ) ) ↔ ( -us ‘ ( 𝐴 ·s 𝐶 ) ) <s ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ) ) |
8 |
3
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐶 ) ∈ No ) |
9 |
|
negs0s |
⊢ ( -us ‘ 0s ) = 0s |
10 |
|
0sno |
⊢ 0s ∈ No |
11 |
10
|
a1i |
⊢ ( 𝜑 → 0s ∈ No ) |
12 |
3 11
|
sltnegd |
⊢ ( 𝜑 → ( 𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us ‘ 𝐶 ) ) ) |
13 |
4 12
|
mpbid |
⊢ ( 𝜑 → ( -us ‘ 0s ) <s ( -us ‘ 𝐶 ) ) |
14 |
9 13
|
eqbrtrrid |
⊢ ( 𝜑 → 0s <s ( -us ‘ 𝐶 ) ) |
15 |
1 2 8 14
|
sltmul1d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ·s ( -us ‘ 𝐶 ) ) <s ( 𝐵 ·s ( -us ‘ 𝐶 ) ) ) ) |
16 |
2 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No ) |
17 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
18 |
16 17
|
sltnegd |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ↔ ( -us ‘ ( 𝐴 ·s 𝐶 ) ) <s ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ) ) |
19 |
7 15 18
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) ) |