Metamath Proof Explorer


Theorem sltmulneg1d

Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltmulneg.1 ( 𝜑𝐴 No )
sltmulneg.2 ( 𝜑𝐵 No )
sltmulneg.3 ( 𝜑𝐶 No )
sltmulneg.4 ( 𝜑𝐶 <s 0s )
Assertion sltmulneg1d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 sltmulneg.1 ( 𝜑𝐴 No )
2 sltmulneg.2 ( 𝜑𝐵 No )
3 sltmulneg.3 ( 𝜑𝐶 No )
4 sltmulneg.4 ( 𝜑𝐶 <s 0s )
5 1 3 mulnegs2d ( 𝜑 → ( 𝐴 ·s ( -us𝐶 ) ) = ( -us ‘ ( 𝐴 ·s 𝐶 ) ) )
6 2 3 mulnegs2d ( 𝜑 → ( 𝐵 ·s ( -us𝐶 ) ) = ( -us ‘ ( 𝐵 ·s 𝐶 ) ) )
7 5 6 breq12d ( 𝜑 → ( ( 𝐴 ·s ( -us𝐶 ) ) <s ( 𝐵 ·s ( -us𝐶 ) ) ↔ ( -us ‘ ( 𝐴 ·s 𝐶 ) ) <s ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ) )
8 3 negscld ( 𝜑 → ( -us𝐶 ) ∈ No )
9 negs0s ( -us ‘ 0s ) = 0s
10 0sno 0s No
11 10 a1i ( 𝜑 → 0s No )
12 3 11 sltnegd ( 𝜑 → ( 𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us𝐶 ) ) )
13 4 12 mpbid ( 𝜑 → ( -us ‘ 0s ) <s ( -us𝐶 ) )
14 9 13 eqbrtrrid ( 𝜑 → 0s <s ( -us𝐶 ) )
15 1 2 8 14 sltmul1d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 ·s ( -us𝐶 ) ) <s ( 𝐵 ·s ( -us𝐶 ) ) ) )
16 2 3 mulscld ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No )
17 1 3 mulscld ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No )
18 16 17 sltnegd ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ↔ ( -us ‘ ( 𝐴 ·s 𝐶 ) ) <s ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ) )
19 7 15 18 3bitr4d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) )