Metamath Proof Explorer


Theorem sltmulneg2d

Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltmulneg.1 ( 𝜑𝐴 No )
sltmulneg.2 ( 𝜑𝐵 No )
sltmulneg.3 ( 𝜑𝐶 No )
sltmulneg.4 ( 𝜑𝐶 <s 0s )
Assertion sltmulneg2d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltmulneg.1 ( 𝜑𝐴 No )
2 sltmulneg.2 ( 𝜑𝐵 No )
3 sltmulneg.3 ( 𝜑𝐶 No )
4 sltmulneg.4 ( 𝜑𝐶 <s 0s )
5 1 2 3 4 sltmulneg1d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ) )
6 2 3 mulscomd ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) )
7 1 3 mulscomd ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( 𝐶 ·s 𝐴 ) )
8 6 7 breq12d ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) <s ( 𝐴 ·s 𝐶 ) ↔ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) )
9 5 8 bitrd ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 ·s 𝐵 ) <s ( 𝐶 ·s 𝐴 ) ) )