Metamath Proof Explorer


Theorem sltne

Description: Surreal less-than implies not equal. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion sltne ( ( 𝐴 No 𝐴 <s 𝐵 ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 sltirr ( 𝐴 No → ¬ 𝐴 <s 𝐴 )
2 breq2 ( 𝐵 = 𝐴 → ( 𝐴 <s 𝐵𝐴 <s 𝐴 ) )
3 2 notbid ( 𝐵 = 𝐴 → ( ¬ 𝐴 <s 𝐵 ↔ ¬ 𝐴 <s 𝐴 ) )
4 1 3 syl5ibrcom ( 𝐴 No → ( 𝐵 = 𝐴 → ¬ 𝐴 <s 𝐵 ) )
5 4 necon2ad ( 𝐴 No → ( 𝐴 <s 𝐵𝐵𝐴 ) )
6 5 imp ( ( 𝐴 No 𝐴 <s 𝐵 ) → 𝐵𝐴 )