Step |
Hyp |
Ref |
Expression |
1 |
|
sltnegim |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
2 |
|
negscl |
⊢ ( 𝐵 ∈ No → ( -us ‘ 𝐵 ) ∈ No ) |
3 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
4 |
|
sltnegim |
⊢ ( ( ( -us ‘ 𝐵 ) ∈ No ∧ ( -us ‘ 𝐴 ) ∈ No ) → ( ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) → ( -us ‘ ( -us ‘ 𝐴 ) ) <s ( -us ‘ ( -us ‘ 𝐵 ) ) ) ) |
5 |
2 3 4
|
syl2anr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) → ( -us ‘ ( -us ‘ 𝐴 ) ) <s ( -us ‘ ( -us ‘ 𝐵 ) ) ) ) |
6 |
|
negnegs |
⊢ ( 𝐴 ∈ No → ( -us ‘ ( -us ‘ 𝐴 ) ) = 𝐴 ) |
7 |
|
negnegs |
⊢ ( 𝐵 ∈ No → ( -us ‘ ( -us ‘ 𝐵 ) ) = 𝐵 ) |
8 |
6 7
|
breqan12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ ( -us ‘ 𝐴 ) ) <s ( -us ‘ ( -us ‘ 𝐵 ) ) ↔ 𝐴 <s 𝐵 ) ) |
9 |
5 8
|
sylibd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) → 𝐴 <s 𝐵 ) ) |
10 |
1 9
|
impbid |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |