Metamath Proof Explorer


Theorem sltneg

Description: Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion sltneg ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ( -us𝐵 ) <s ( -us𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltnegim ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) )
2 negscl ( 𝐵 No → ( -us𝐵 ) ∈ No )
3 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
4 sltnegim ( ( ( -us𝐵 ) ∈ No ∧ ( -us𝐴 ) ∈ No ) → ( ( -us𝐵 ) <s ( -us𝐴 ) → ( -us ‘ ( -us𝐴 ) ) <s ( -us ‘ ( -us𝐵 ) ) ) )
5 2 3 4 syl2anr ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐵 ) <s ( -us𝐴 ) → ( -us ‘ ( -us𝐴 ) ) <s ( -us ‘ ( -us𝐵 ) ) ) )
6 negnegs ( 𝐴 No → ( -us ‘ ( -us𝐴 ) ) = 𝐴 )
7 negnegs ( 𝐵 No → ( -us ‘ ( -us𝐵 ) ) = 𝐵 )
8 6 7 breqan12d ( ( 𝐴 No 𝐵 No ) → ( ( -us ‘ ( -us𝐴 ) ) <s ( -us ‘ ( -us𝐵 ) ) ↔ 𝐴 <s 𝐵 ) )
9 5 8 sylibd ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐵 ) <s ( -us𝐴 ) → 𝐴 <s 𝐵 ) )
10 1 9 impbid ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ( -us𝐵 ) <s ( -us𝐴 ) ) )