Metamath Proof Explorer


Theorem sltnegim

Description: The forward direction of the ordering properties of negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion sltnegim ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 negsprop ( ( 𝐴 No 𝐵 No ) → ( ( -us𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) ) )
2 1 simprd ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 → ( -us𝐵 ) <s ( -us𝐴 ) ) )