Metamath Proof Explorer
Description: The forward direction of the ordering properties of negation.
(Contributed by Scott Fenton, 3-Feb-2025)
|
|
Ref |
Expression |
|
Assertion |
sltnegim |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
negsprop |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) ) |
2 |
1
|
simprd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |