| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → 𝐶 <<s 𝐷 ) |
| 2 |
|
simpll |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → 𝐴 <<s 𝐵 ) |
| 3 |
|
simprr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → 𝑌 = ( 𝐶 |s 𝐷 ) ) |
| 4 |
|
simprl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
| 5 |
1 2 3 4
|
slerecd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑌 ≤s 𝑋 ↔ ( ∀ 𝑏 ∈ 𝐵 𝑌 <s 𝑏 ∧ ∀ 𝑐 ∈ 𝐶 𝑐 <s 𝑋 ) ) ) |
| 6 |
|
ancom |
⊢ ( ( ∀ 𝑏 ∈ 𝐵 𝑌 <s 𝑏 ∧ ∀ 𝑐 ∈ 𝐶 𝑐 <s 𝑋 ) ↔ ( ∀ 𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀ 𝑏 ∈ 𝐵 𝑌 <s 𝑏 ) ) |
| 7 |
5 6
|
bitrdi |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑌 ≤s 𝑋 ↔ ( ∀ 𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀ 𝑏 ∈ 𝐵 𝑌 <s 𝑏 ) ) ) |
| 8 |
|
scutcut |
⊢ ( 𝐶 <<s 𝐷 → ( ( 𝐶 |s 𝐷 ) ∈ No ∧ 𝐶 <<s { ( 𝐶 |s 𝐷 ) } ∧ { ( 𝐶 |s 𝐷 ) } <<s 𝐷 ) ) |
| 9 |
8
|
simp1d |
⊢ ( 𝐶 <<s 𝐷 → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝐶 |s 𝐷 ) ∈ No ) |
| 11 |
3 10
|
eqeltrd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → 𝑌 ∈ No ) |
| 12 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
| 13 |
12
|
simp1d |
⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
| 15 |
4 14
|
eqeltrd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → 𝑋 ∈ No ) |
| 16 |
|
slenlt |
⊢ ( ( 𝑌 ∈ No ∧ 𝑋 ∈ No ) → ( 𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌 ) ) |
| 17 |
11 15 16
|
syl2anc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌 ) ) |
| 18 |
|
ssltss1 |
⊢ ( 𝐶 <<s 𝐷 → 𝐶 ⊆ No ) |
| 19 |
18
|
ad2antlr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → 𝐶 ⊆ No ) |
| 20 |
19
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝑐 ∈ No ) |
| 21 |
15
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝑋 ∈ No ) |
| 22 |
|
sltnle |
⊢ ( ( 𝑐 ∈ No ∧ 𝑋 ∈ No ) → ( 𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐 ) ) |
| 23 |
20 21 22
|
syl2anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐 ) ) |
| 24 |
23
|
ralbidva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( ∀ 𝑐 ∈ 𝐶 𝑐 <s 𝑋 ↔ ∀ 𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐 ) ) |
| 25 |
11
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑌 ∈ No ) |
| 26 |
|
ssltss2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → 𝐵 ⊆ No ) |
| 28 |
27
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
| 29 |
|
sltnle |
⊢ ( ( 𝑌 ∈ No ∧ 𝑏 ∈ No ) → ( 𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌 ) ) |
| 30 |
25 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌 ) ) |
| 31 |
30
|
ralbidva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( ∀ 𝑏 ∈ 𝐵 𝑌 <s 𝑏 ↔ ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌 ) ) |
| 32 |
24 31
|
anbi12d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( ( ∀ 𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀ 𝑏 ∈ 𝐵 𝑌 <s 𝑏 ) ↔ ( ∀ 𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌 ) ) ) |
| 33 |
|
ralnex |
⊢ ( ∀ 𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐 ↔ ¬ ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ) |
| 34 |
|
ralnex |
⊢ ( ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌 ↔ ¬ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) |
| 35 |
33 34
|
anbi12i |
⊢ ( ( ∀ 𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌 ) ↔ ( ¬ ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) |
| 36 |
|
ioran |
⊢ ( ¬ ( ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ↔ ( ¬ ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) |
| 37 |
35 36
|
bitr4i |
⊢ ( ( ∀ 𝑐 ∈ 𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀ 𝑏 ∈ 𝐵 ¬ 𝑏 ≤s 𝑌 ) ↔ ¬ ( ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) |
| 38 |
32 37
|
bitrdi |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( ( ∀ 𝑐 ∈ 𝐶 𝑐 <s 𝑋 ∧ ∀ 𝑏 ∈ 𝐵 𝑌 <s 𝑏 ) ↔ ¬ ( ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) ) |
| 39 |
7 17 38
|
3bitr3d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( ¬ 𝑋 <s 𝑌 ↔ ¬ ( ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) ) |
| 40 |
39
|
con4bid |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) ) |