Metamath Proof Explorer


Theorem sltsub1

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion sltsub1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 negscl ( 𝐶 No → ( -us𝐶 ) ∈ No )
2 sltadd1 ( ( 𝐴 No 𝐵 No ∧ ( -us𝐶 ) ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s ( -us𝐶 ) ) <s ( 𝐵 +s ( -us𝐶 ) ) ) )
3 1 2 syl3an3 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s ( -us𝐶 ) ) <s ( 𝐵 +s ( -us𝐶 ) ) ) )
4 subsval ( ( 𝐴 No 𝐶 No ) → ( 𝐴 -s 𝐶 ) = ( 𝐴 +s ( -us𝐶 ) ) )
5 4 3adant2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 -s 𝐶 ) = ( 𝐴 +s ( -us𝐶 ) ) )
6 subsval ( ( 𝐵 No 𝐶 No ) → ( 𝐵 -s 𝐶 ) = ( 𝐵 +s ( -us𝐶 ) ) )
7 6 3adant1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐵 -s 𝐶 ) = ( 𝐵 +s ( -us𝐶 ) ) )
8 5 7 breq12d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐶 ) ↔ ( 𝐴 +s ( -us𝐶 ) ) <s ( 𝐵 +s ( -us𝐶 ) ) ) )
9 3 8 bitr4d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐶 ) ) )