Step |
Hyp |
Ref |
Expression |
1 |
|
negscl |
⊢ ( 𝐶 ∈ No → ( -us ‘ 𝐶 ) ∈ No ) |
2 |
|
sltadd1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( -us ‘ 𝐶 ) ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s ( -us ‘ 𝐶 ) ) <s ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) ) |
3 |
1 2
|
syl3an3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 +s ( -us ‘ 𝐶 ) ) <s ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) ) |
4 |
|
subsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 -s 𝐶 ) = ( 𝐴 +s ( -us ‘ 𝐶 ) ) ) |
5 |
4
|
3adant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 -s 𝐶 ) = ( 𝐴 +s ( -us ‘ 𝐶 ) ) ) |
6 |
|
subsval |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 -s 𝐶 ) = ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 -s 𝐶 ) = ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) |
8 |
5 7
|
breq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐶 ) ↔ ( 𝐴 +s ( -us ‘ 𝐶 ) ) <s ( 𝐵 +s ( -us ‘ 𝐶 ) ) ) ) |
9 |
3 8
|
bitr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐶 ) ) ) |