Metamath Proof Explorer
Description: Subtraction from both sides of surreal less-than. (Contributed by Scott
Fenton, 5-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
sltsubd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
sltsubd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
sltsubd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
Assertion |
sltsub1d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐶 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sltsubd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltsubd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltsubd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltsub1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐶 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐶 ) ) ) |