Step |
Hyp |
Ref |
Expression |
1 |
|
negscl |
⊢ ( 𝐵 ∈ No → ( -us ‘ 𝐵 ) ∈ No ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘ 𝐵 ) ∈ No ) |
3 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘ 𝐴 ) ∈ No ) |
5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) |
6 |
2 4 5
|
sltadd2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ↔ ( 𝐶 +s ( -us ‘ 𝐵 ) ) <s ( 𝐶 +s ( -us ‘ 𝐴 ) ) ) ) |
7 |
|
sltneg |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) |
10 |
5 9
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐶 -s 𝐵 ) = ( 𝐶 +s ( -us ‘ 𝐵 ) ) ) |
11 |
|
simp1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) |
12 |
5 11
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐶 -s 𝐴 ) = ( 𝐶 +s ( -us ‘ 𝐴 ) ) ) |
13 |
10 12
|
breq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ↔ ( 𝐶 +s ( -us ‘ 𝐵 ) ) <s ( 𝐶 +s ( -us ‘ 𝐴 ) ) ) ) |
14 |
6 8 13
|
3bitr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ) ) |