| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negscl |
⊢ ( 𝐵 ∈ No → ( -us ‘ 𝐵 ) ∈ No ) |
| 2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘ 𝐵 ) ∈ No ) |
| 3 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( -us ‘ 𝐴 ) ∈ No ) |
| 5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐶 ∈ No ) |
| 6 |
2 4 5
|
sltadd2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ↔ ( 𝐶 +s ( -us ‘ 𝐵 ) ) <s ( 𝐶 +s ( -us ‘ 𝐴 ) ) ) ) |
| 7 |
|
sltneg |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( -us ‘ 𝐵 ) <s ( -us ‘ 𝐴 ) ) ) |
| 9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐵 ∈ No ) |
| 10 |
5 9
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐶 -s 𝐵 ) = ( 𝐶 +s ( -us ‘ 𝐵 ) ) ) |
| 11 |
|
simp1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → 𝐴 ∈ No ) |
| 12 |
5 11
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐶 -s 𝐴 ) = ( 𝐶 +s ( -us ‘ 𝐴 ) ) ) |
| 13 |
10 12
|
breq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ↔ ( 𝐶 +s ( -us ‘ 𝐵 ) ) <s ( 𝐶 +s ( -us ‘ 𝐴 ) ) ) ) |
| 14 |
6 8 13
|
3bitr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ) ) |