Metamath Proof Explorer


Theorem sltsub2

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion sltsub2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 negscl ( 𝐵 No → ( -us𝐵 ) ∈ No )
2 1 3ad2ant2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( -us𝐵 ) ∈ No )
3 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
4 3 3ad2ant1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( -us𝐴 ) ∈ No )
5 simp3 ( ( 𝐴 No 𝐵 No 𝐶 No ) → 𝐶 No )
6 2 4 5 sltadd2d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( -us𝐵 ) <s ( -us𝐴 ) ↔ ( 𝐶 +s ( -us𝐵 ) ) <s ( 𝐶 +s ( -us𝐴 ) ) ) )
7 sltneg ( ( 𝐴 No 𝐵 No ) → ( 𝐴 <s 𝐵 ↔ ( -us𝐵 ) <s ( -us𝐴 ) ) )
8 7 3adant3 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( -us𝐵 ) <s ( -us𝐴 ) ) )
9 simp2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → 𝐵 No )
10 5 9 subsvald ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐶 -s 𝐵 ) = ( 𝐶 +s ( -us𝐵 ) ) )
11 simp1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → 𝐴 No )
12 5 11 subsvald ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐶 -s 𝐴 ) = ( 𝐶 +s ( -us𝐴 ) ) )
13 10 12 breq12d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ↔ ( 𝐶 +s ( -us𝐵 ) ) <s ( 𝐶 +s ( -us𝐴 ) ) ) )
14 6 8 13 3bitr4d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ) )