Metamath Proof Explorer


Theorem sltsub2d

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses sltsubd.1 ( 𝜑𝐴 No )
sltsubd.2 ( 𝜑𝐵 No )
sltsubd.3 ( 𝜑𝐶 No )
Assertion sltsub2d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubd.1 ( 𝜑𝐴 No )
2 sltsubd.2 ( 𝜑𝐵 No )
3 sltsubd.3 ( 𝜑𝐶 No )
4 sltsub2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 <s 𝐵 ↔ ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 𝐶 -s 𝐵 ) <s ( 𝐶 -s 𝐴 ) ) )