Metamath Proof Explorer


Theorem sltsubadd2d

Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025)

Ref Expression
Hypotheses sltsubadd.1 ( 𝜑𝐴 No )
sltsubadd.2 ( 𝜑𝐵 No )
sltsubadd.3 ( 𝜑𝐶 No )
Assertion sltsubadd2d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶𝐴 <s ( 𝐵 +s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubadd.1 ( 𝜑𝐴 No )
2 sltsubadd.2 ( 𝜑𝐵 No )
3 sltsubadd.3 ( 𝜑𝐶 No )
4 1 2 3 sltsubaddd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶𝐴 <s ( 𝐶 +s 𝐵 ) ) )
5 2 3 addscomd ( 𝜑 → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) )
6 5 breq2d ( 𝜑 → ( 𝐴 <s ( 𝐵 +s 𝐶 ) ↔ 𝐴 <s ( 𝐶 +s 𝐵 ) ) )
7 4 6 bitr4d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶𝐴 <s ( 𝐵 +s 𝐶 ) ) )