Metamath Proof Explorer


Theorem sltsubaddd

Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025)

Ref Expression
Hypotheses sltsubadd.1 ( 𝜑𝐴 No )
sltsubadd.2 ( 𝜑𝐵 No )
sltsubadd.3 ( 𝜑𝐶 No )
Assertion sltsubaddd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶𝐴 <s ( 𝐶 +s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubadd.1 ( 𝜑𝐴 No )
2 sltsubadd.2 ( 𝜑𝐵 No )
3 sltsubadd.3 ( 𝜑𝐶 No )
4 1 2 subscld ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No )
5 4 3 2 sltadd1d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶 ↔ ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) <s ( 𝐶 +s 𝐵 ) ) )
6 npcans ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 )
7 1 2 6 syl2anc ( 𝜑 → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 )
8 7 breq1d ( 𝜑 → ( ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) <s ( 𝐶 +s 𝐵 ) ↔ 𝐴 <s ( 𝐶 +s 𝐵 ) ) )
9 5 8 bitrd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s 𝐶𝐴 <s ( 𝐶 +s 𝐵 ) ) )