Metamath Proof Explorer


Theorem sltsubposd

Description: Subtraction of a positive number decreases the sum. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltsubpos.1 ( 𝜑𝐴 No )
sltsubpos.2 ( 𝜑𝐵 No )
Assertion sltsubposd ( 𝜑 → ( 0s <s 𝐴 ↔ ( 𝐵 -s 𝐴 ) <s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sltsubpos.1 ( 𝜑𝐴 No )
2 sltsubpos.2 ( 𝜑𝐵 No )
3 0sno 0s No
4 3 a1i ( 𝜑 → 0s No )
5 4 1 2 sltsub2d ( 𝜑 → ( 0s <s 𝐴 ↔ ( 𝐵 -s 𝐴 ) <s ( 𝐵 -s 0s ) ) )
6 subsid1 ( 𝐵 No → ( 𝐵 -s 0s ) = 𝐵 )
7 2 6 syl ( 𝜑 → ( 𝐵 -s 0s ) = 𝐵 )
8 7 breq2d ( 𝜑 → ( ( 𝐵 -s 𝐴 ) <s ( 𝐵 -s 0s ) ↔ ( 𝐵 -s 𝐴 ) <s 𝐵 ) )
9 5 8 bitrd ( 𝜑 → ( 0s <s 𝐴 ↔ ( 𝐵 -s 𝐴 ) <s 𝐵 ) )