Step |
Hyp |
Ref |
Expression |
1 |
|
sltsubsubbd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltsubsubbd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltsubsubbd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltsubsubbd.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
5 |
4 3
|
subscld |
⊢ ( 𝜑 → ( 𝐷 -s 𝐶 ) ∈ No ) |
6 |
2 1
|
subscld |
⊢ ( 𝜑 → ( 𝐵 -s 𝐴 ) ∈ No ) |
7 |
5 6
|
sltnegd |
⊢ ( 𝜑 → ( ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ↔ ( -us ‘ ( 𝐵 -s 𝐴 ) ) <s ( -us ‘ ( 𝐷 -s 𝐶 ) ) ) ) |
8 |
2 1
|
negsubsdi2d |
⊢ ( 𝜑 → ( -us ‘ ( 𝐵 -s 𝐴 ) ) = ( 𝐴 -s 𝐵 ) ) |
9 |
4 3
|
negsubsdi2d |
⊢ ( 𝜑 → ( -us ‘ ( 𝐷 -s 𝐶 ) ) = ( 𝐶 -s 𝐷 ) ) |
10 |
8 9
|
breq12d |
⊢ ( 𝜑 → ( ( -us ‘ ( 𝐵 -s 𝐴 ) ) <s ( -us ‘ ( 𝐷 -s 𝐶 ) ) ↔ ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ) ) |
11 |
7 10
|
bitr2d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) ) |