Metamath Proof Explorer


Theorem sltsubsub2bd

Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025)

Ref Expression
Hypotheses sltsubsubbd.1 ( 𝜑𝐴 No )
sltsubsubbd.2 ( 𝜑𝐵 No )
sltsubsubbd.3 ( 𝜑𝐶 No )
sltsubsubbd.4 ( 𝜑𝐷 No )
Assertion sltsubsub2bd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 ( 𝜑𝐴 No )
2 sltsubsubbd.2 ( 𝜑𝐵 No )
3 sltsubsubbd.3 ( 𝜑𝐶 No )
4 sltsubsubbd.4 ( 𝜑𝐷 No )
5 4 3 subscld ( 𝜑 → ( 𝐷 -s 𝐶 ) ∈ No )
6 2 1 subscld ( 𝜑 → ( 𝐵 -s 𝐴 ) ∈ No )
7 5 6 sltnegd ( 𝜑 → ( ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ↔ ( -us ‘ ( 𝐵 -s 𝐴 ) ) <s ( -us ‘ ( 𝐷 -s 𝐶 ) ) ) )
8 2 1 negsubsdi2d ( 𝜑 → ( -us ‘ ( 𝐵 -s 𝐴 ) ) = ( 𝐴 -s 𝐵 ) )
9 4 3 negsubsdi2d ( 𝜑 → ( -us ‘ ( 𝐷 -s 𝐶 ) ) = ( 𝐶 -s 𝐷 ) )
10 8 9 breq12d ( 𝜑 → ( ( -us ‘ ( 𝐵 -s 𝐴 ) ) <s ( -us ‘ ( 𝐷 -s 𝐶 ) ) ↔ ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ) )
11 7 10 bitr2d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) )