Metamath Proof Explorer


Theorem sltsubsub3bd

Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025)

Ref Expression
Hypotheses sltsubsubbd.1 ( 𝜑𝐴 No )
sltsubsubbd.2 ( 𝜑𝐵 No )
sltsubsubbd.3 ( 𝜑𝐶 No )
sltsubsubbd.4 ( 𝜑𝐷 No )
Assertion sltsubsub3bd ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 ( 𝜑𝐴 No )
2 sltsubsubbd.2 ( 𝜑𝐵 No )
3 sltsubsubbd.3 ( 𝜑𝐶 No )
4 sltsubsubbd.4 ( 𝜑𝐷 No )
5 1 2 3 4 sltsubsubbd ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ) )
6 1 2 3 4 sltsubsub2bd ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) )
7 5 6 bitrd ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) )