Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 21-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltsubsubbd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
sltsubsubbd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
sltsubsubbd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
sltsubsubbd.4 | ⊢ ( 𝜑 → 𝐷 ∈ No ) | ||
Assertion | sltsubsub3bd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsubsubbd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | sltsubsubbd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | sltsubsubbd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
4 | sltsubsubbd.4 | ⊢ ( 𝜑 → 𝐷 ∈ No ) | |
5 | 1 2 3 4 | sltsubsubbd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ) ) |
6 | 1 2 3 4 | sltsubsub2bd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) ) |
7 | 5 6 | bitrd | ⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐷 -s 𝐶 ) <s ( 𝐵 -s 𝐴 ) ) ) |