Metamath Proof Explorer


Theorem sltsubsubbd

Description: Equivalence for the surreal less-than relationship between differences. (Contributed by Scott Fenton, 6-Feb-2025)

Ref Expression
Hypotheses sltsubsubbd.1 ( 𝜑𝐴 No )
sltsubsubbd.2 ( 𝜑𝐵 No )
sltsubsubbd.3 ( 𝜑𝐶 No )
sltsubsubbd.4 ( 𝜑𝐷 No )
Assertion sltsubsubbd ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 sltsubsubbd.1 ( 𝜑𝐴 No )
2 sltsubsubbd.2 ( 𝜑𝐵 No )
3 sltsubsubbd.3 ( 𝜑𝐶 No )
4 sltsubsubbd.4 ( 𝜑𝐷 No )
5 npcans ( ( 𝐴 No 𝐶 No ) → ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) = 𝐴 )
6 1 3 5 syl2anc ( 𝜑 → ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) = 𝐴 )
7 npcans ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 )
8 1 2 7 syl2anc ( 𝜑 → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 )
9 6 8 eqtr4d ( 𝜑 → ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) = ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) )
10 2 3 addscomd ( 𝜑 → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) )
11 10 oveq1d ( 𝜑 → ( ( 𝐵 +s 𝐶 ) +s ( -us𝐷 ) ) = ( ( 𝐶 +s 𝐵 ) +s ( -us𝐷 ) ) )
12 2 4 subsvald ( 𝜑 → ( 𝐵 -s 𝐷 ) = ( 𝐵 +s ( -us𝐷 ) ) )
13 12 oveq1d ( 𝜑 → ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) = ( ( 𝐵 +s ( -us𝐷 ) ) +s 𝐶 ) )
14 4 negscld ( 𝜑 → ( -us𝐷 ) ∈ No )
15 2 14 3 adds32d ( 𝜑 → ( ( 𝐵 +s ( -us𝐷 ) ) +s 𝐶 ) = ( ( 𝐵 +s 𝐶 ) +s ( -us𝐷 ) ) )
16 13 15 eqtrd ( 𝜑 → ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) = ( ( 𝐵 +s 𝐶 ) +s ( -us𝐷 ) ) )
17 3 4 subsvald ( 𝜑 → ( 𝐶 -s 𝐷 ) = ( 𝐶 +s ( -us𝐷 ) ) )
18 17 oveq1d ( 𝜑 → ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) = ( ( 𝐶 +s ( -us𝐷 ) ) +s 𝐵 ) )
19 3 14 2 adds32d ( 𝜑 → ( ( 𝐶 +s ( -us𝐷 ) ) +s 𝐵 ) = ( ( 𝐶 +s 𝐵 ) +s ( -us𝐷 ) ) )
20 18 19 eqtrd ( 𝜑 → ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) = ( ( 𝐶 +s 𝐵 ) +s ( -us𝐷 ) ) )
21 11 16 20 3eqtr4d ( 𝜑 → ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) = ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) )
22 9 21 breq12d ( 𝜑 → ( ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) <s ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) ↔ ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) <s ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) ) )
23 1 3 subscld ( 𝜑 → ( 𝐴 -s 𝐶 ) ∈ No )
24 2 4 subscld ( 𝜑 → ( 𝐵 -s 𝐷 ) ∈ No )
25 23 24 3 sltadd1d ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) <s ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) ) )
26 1 2 subscld ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No )
27 3 4 subscld ( 𝜑 → ( 𝐶 -s 𝐷 ) ∈ No )
28 26 27 2 sltadd1d ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ↔ ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) <s ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) ) )
29 22 25 28 3bitr4d ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ) )