Step |
Hyp |
Ref |
Expression |
1 |
|
sltsubsubbd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
sltsubsubbd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
sltsubsubbd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sltsubsubbd.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
5 |
|
npcans |
⊢ ( ( 𝐴 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) = 𝐴 ) |
6 |
1 3 5
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) = 𝐴 ) |
7 |
|
npcans |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 ) |
8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 ) |
9 |
6 8
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) = ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) ) |
10 |
2 3
|
addscomd |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐷 ) ) = ( ( 𝐶 +s 𝐵 ) +s ( -us ‘ 𝐷 ) ) ) |
12 |
2 4
|
subsvald |
⊢ ( 𝜑 → ( 𝐵 -s 𝐷 ) = ( 𝐵 +s ( -us ‘ 𝐷 ) ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) = ( ( 𝐵 +s ( -us ‘ 𝐷 ) ) +s 𝐶 ) ) |
14 |
4
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐷 ) ∈ No ) |
15 |
2 14 3
|
adds32d |
⊢ ( 𝜑 → ( ( 𝐵 +s ( -us ‘ 𝐷 ) ) +s 𝐶 ) = ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐷 ) ) ) |
16 |
13 15
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) = ( ( 𝐵 +s 𝐶 ) +s ( -us ‘ 𝐷 ) ) ) |
17 |
3 4
|
subsvald |
⊢ ( 𝜑 → ( 𝐶 -s 𝐷 ) = ( 𝐶 +s ( -us ‘ 𝐷 ) ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) = ( ( 𝐶 +s ( -us ‘ 𝐷 ) ) +s 𝐵 ) ) |
19 |
3 14 2
|
adds32d |
⊢ ( 𝜑 → ( ( 𝐶 +s ( -us ‘ 𝐷 ) ) +s 𝐵 ) = ( ( 𝐶 +s 𝐵 ) +s ( -us ‘ 𝐷 ) ) ) |
20 |
18 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) = ( ( 𝐶 +s 𝐵 ) +s ( -us ‘ 𝐷 ) ) ) |
21 |
11 16 20
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) = ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) ) |
22 |
9 21
|
breq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) <s ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) ↔ ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) <s ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) ) ) |
23 |
1 3
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐶 ) ∈ No ) |
24 |
2 4
|
subscld |
⊢ ( 𝜑 → ( 𝐵 -s 𝐷 ) ∈ No ) |
25 |
23 24 3
|
sltadd1d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( ( 𝐴 -s 𝐶 ) +s 𝐶 ) <s ( ( 𝐵 -s 𝐷 ) +s 𝐶 ) ) ) |
26 |
1 2
|
subscld |
⊢ ( 𝜑 → ( 𝐴 -s 𝐵 ) ∈ No ) |
27 |
3 4
|
subscld |
⊢ ( 𝜑 → ( 𝐶 -s 𝐷 ) ∈ No ) |
28 |
26 27 2
|
sltadd1d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ↔ ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) <s ( ( 𝐶 -s 𝐷 ) +s 𝐵 ) ) ) |
29 |
22 25 28
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝐴 -s 𝐶 ) <s ( 𝐵 -s 𝐷 ) ↔ ( 𝐴 -s 𝐵 ) <s ( 𝐶 -s 𝐷 ) ) ) |