Metamath Proof Explorer


Theorem slwhash

Description: A sylow subgroup has cardinality equal to the maximum power of P dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses fislw.1 𝑋 = ( Base ‘ 𝐺 )
slwhash.3 ( 𝜑𝑋 ∈ Fin )
slwhash.4 ( 𝜑𝐻 ∈ ( 𝑃 pSyl 𝐺 ) )
Assertion slwhash ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 fislw.1 𝑋 = ( Base ‘ 𝐺 )
2 slwhash.3 ( 𝜑𝑋 ∈ Fin )
3 slwhash.4 ( 𝜑𝐻 ∈ ( 𝑃 pSyl 𝐺 ) )
4 slwsubg ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
5 3 4 syl ( 𝜑𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
6 subgrcl ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
7 5 6 syl ( 𝜑𝐺 ∈ Grp )
8 slwprm ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑃 ∈ ℙ )
9 3 8 syl ( 𝜑𝑃 ∈ ℙ )
10 1 grpbn0 ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ )
11 7 10 syl ( 𝜑𝑋 ≠ ∅ )
12 hashnncl ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) )
13 2 12 syl ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) )
14 11 13 mpbird ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ )
15 9 14 pccld ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 )
16 pcdvds ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∥ ( ♯ ‘ 𝑋 ) )
17 9 14 16 syl2anc ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∥ ( ♯ ‘ 𝑋 ) )
18 1 7 2 9 15 17 sylow1 ( 𝜑 → ∃ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
19 2 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝑋 ∈ Fin )
20 5 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) )
21 simprl ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝑘 ∈ ( SubGrp ‘ 𝐺 ) )
22 eqid ( +g𝐺 ) = ( +g𝐺 )
23 eqid ( 𝐺s 𝐻 ) = ( 𝐺s 𝐻 )
24 23 slwpgp ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑃 pGrp ( 𝐺s 𝐻 ) )
25 3 24 syl ( 𝜑𝑃 pGrp ( 𝐺s 𝐻 ) )
26 25 adantr ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝑃 pGrp ( 𝐺s 𝐻 ) )
27 simprr ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
28 eqid ( -g𝐺 ) = ( -g𝐺 )
29 1 19 20 21 22 26 27 28 sylow2b ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ∃ 𝑔𝑋 𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) )
30 simprr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) )
31 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) )
32 31 8 syl ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝑃 ∈ ℙ )
33 15 ad2antrr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 )
34 21 adantr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝑘 ∈ ( SubGrp ‘ 𝐺 ) )
35 simprl ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝑔𝑋 )
36 eqid ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) = ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) )
37 1 22 28 36 conjsubg ( ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑔𝑋 ) → ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
38 34 35 37 syl2anc ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) )
39 eqid ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) = ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) )
40 39 subgbas ( ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) → ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) = ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) )
41 38 40 syl ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) = ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) )
42 41 fveq2d ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ♯ ‘ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) = ( ♯ ‘ ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ) )
43 1 22 28 36 conjsubgen ( ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑔𝑋 ) → 𝑘 ≈ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) )
44 34 35 43 syl2anc ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝑘 ≈ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) )
45 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝑋 ∈ Fin )
46 1 subgss ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) → 𝑘𝑋 )
47 34 46 syl ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝑘𝑋 )
48 45 47 ssfid ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝑘 ∈ Fin )
49 1 subgss ( ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) → ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ⊆ 𝑋 )
50 38 49 syl ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ⊆ 𝑋 )
51 45 50 ssfid ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∈ Fin )
52 hashen ( ( 𝑘 ∈ Fin ∧ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑘 ) = ( ♯ ‘ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ↔ 𝑘 ≈ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) )
53 48 51 52 syl2anc ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ( ♯ ‘ 𝑘 ) = ( ♯ ‘ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ↔ 𝑘 ≈ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) )
54 44 53 mpbird ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ♯ ‘ 𝑘 ) = ( ♯ ‘ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) )
55 simplrr ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
56 54 55 eqtr3d ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ♯ ‘ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
57 42 56 eqtr3d ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ♯ ‘ ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
58 oveq2 ( 𝑛 = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) → ( 𝑃𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
59 58 rspceeqv ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ) = ( 𝑃𝑛 ) )
60 33 57 59 syl2anc ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ) = ( 𝑃𝑛 ) )
61 39 subggrp ( ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ∈ Grp )
62 38 61 syl ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ∈ Grp )
63 41 51 eqeltrrd ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ∈ Fin )
64 eqid ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) = ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) )
65 64 pgpfi ( ( ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ∈ Grp ∧ ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ∈ Fin ) → ( 𝑃 pGrp ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ) = ( 𝑃𝑛 ) ) ) )
66 62 63 65 syl2anc ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( 𝑃 pGrp ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ) = ( 𝑃𝑛 ) ) ) )
67 32 60 66 mpbir2and ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝑃 pGrp ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) )
68 39 slwispgp ( ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ∧ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∧ 𝑃 pGrp ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ↔ 𝐻 = ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) )
69 31 38 68 syl2anc ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ( 𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ∧ 𝑃 pGrp ( 𝐺s ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) ↔ 𝐻 = ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) )
70 30 67 69 mpbi2and ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → 𝐻 = ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) )
71 70 fveq2d ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) )
72 71 56 eqtrd ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑔𝑋𝐻 ⊆ ran ( 𝑥𝑘 ↦ ( ( 𝑔 ( +g𝐺 ) 𝑥 ) ( -g𝐺 ) 𝑔 ) ) ) ) → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
73 29 72 rexlimddv ( ( 𝜑 ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )
74 18 73 rexlimddv ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) )