| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fislw.1 | 
							⊢ 𝑋  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							slwhash.3 | 
							⊢ ( 𝜑  →  𝑋  ∈  Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							slwhash.4 | 
							⊢ ( 𝜑  →  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							slwsubg | 
							⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							subgrcl | 
							⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 8 | 
							
								
							 | 
							slwprm | 
							⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑃  ∈  ℙ )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑃  ∈  ℙ )  | 
						
						
							| 10 | 
							
								1
							 | 
							grpbn0 | 
							⊢ ( 𝐺  ∈  Grp  →  𝑋  ≠  ∅ )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑋  ≠  ∅ )  | 
						
						
							| 12 | 
							
								
							 | 
							hashnncl | 
							⊢ ( 𝑋  ∈  Fin  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℕ )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							pccld | 
							⊢ ( 𝜑  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0 )  | 
						
						
							| 16 | 
							
								
							 | 
							pcdvds | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ∥  ( ♯ ‘ 𝑋 ) )  | 
						
						
							| 17 | 
							
								9 14 16
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ∥  ( ♯ ‘ 𝑋 ) )  | 
						
						
							| 18 | 
							
								1 7 2 9 15 17
							 | 
							sylow1 | 
							⊢ ( 𝜑  →  ∃ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 19 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑋  ∈  Fin )  | 
						
						
							| 20 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑘  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  𝐻 )  =  ( 𝐺  ↾s  𝐻 )  | 
						
						
							| 24 | 
							
								23
							 | 
							slwpgp | 
							⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) )  | 
						
						
							| 25 | 
							
								3 24
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 )  | 
						
						
							| 29 | 
							
								1 19 20 21 22 26 27 28
							 | 
							sylow2b | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  | 
						
						
							| 31 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) )  | 
						
						
							| 32 | 
							
								31 8
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑃  ∈  ℙ )  | 
						
						
							| 33 | 
							
								15
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0 )  | 
						
						
							| 34 | 
							
								21
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑘  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑔  ∈  𝑋 )  | 
						
						
							| 36 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  =  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  | 
						
						
							| 37 | 
							
								1 22 28 36
							 | 
							conjsubg | 
							⊢ ( ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑔  ∈  𝑋 )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 38 | 
							
								34 35 37
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  =  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							subgbas | 
							⊢ ( ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  =  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  =  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  =  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) ) )  | 
						
						
							| 43 | 
							
								1 22 28 36
							 | 
							conjsubgen | 
							⊢ ( ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑔  ∈  𝑋 )  →  𝑘  ≈  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  | 
						
						
							| 44 | 
							
								34 35 43
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑘  ≈  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  | 
						
						
							| 45 | 
							
								2
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑋  ∈  Fin )  | 
						
						
							| 46 | 
							
								1
							 | 
							subgss | 
							⊢ ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  →  𝑘  ⊆  𝑋 )  | 
						
						
							| 47 | 
							
								34 46
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑘  ⊆  𝑋 )  | 
						
						
							| 48 | 
							
								45 47
							 | 
							ssfid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑘  ∈  Fin )  | 
						
						
							| 49 | 
							
								1
							 | 
							subgss | 
							⊢ ( ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ⊆  𝑋 )  | 
						
						
							| 50 | 
							
								38 49
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ⊆  𝑋 )  | 
						
						
							| 51 | 
							
								45 50
							 | 
							ssfid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  Fin )  | 
						
						
							| 52 | 
							
								
							 | 
							hashen | 
							⊢ ( ( 𝑘  ∈  Fin  ∧  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  Fin )  →  ( ( ♯ ‘ 𝑘 )  =  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ↔  𝑘  ≈  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  | 
						
						
							| 53 | 
							
								48 51 52
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ( ♯ ‘ 𝑘 )  =  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ↔  𝑘  ≈  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  | 
						
						
							| 54 | 
							
								44 53
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ 𝑘 )  =  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							eqtr3d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 57 | 
							
								42 56
							 | 
							eqtr3d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							rspceeqv | 
							⊢ ( ( ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0  ∧  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ 𝑛 ) )  | 
						
						
							| 60 | 
							
								33 57 59
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ 𝑛 ) )  | 
						
						
							| 61 | 
							
								39
							 | 
							subggrp | 
							⊢ ( ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ∈  Grp )  | 
						
						
							| 62 | 
							
								38 61
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ∈  Grp )  | 
						
						
							| 63 | 
							
								41 51
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  ∈  Fin )  | 
						
						
							| 64 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  =  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							pgpfi | 
							⊢ ( ( ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ∈  Grp  ∧  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  ∈  Fin )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) )  | 
						
						
							| 66 | 
							
								62 63 65
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) )  | 
						
						
							| 67 | 
							
								32 60 66
							 | 
							mpbir2and | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  | 
						
						
							| 68 | 
							
								39
							 | 
							slwispgp | 
							⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∧  𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  ↔  𝐻  =  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  | 
						
						
							| 69 | 
							
								31 38 68
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ( 𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∧  𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  ↔  𝐻  =  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  | 
						
						
							| 70 | 
							
								30 67 69
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝐻  =  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							fveq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  | 
						
						
							| 72 | 
							
								71 56
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 73 | 
							
								29 72
							 | 
							rexlimddv | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  | 
						
						
							| 74 | 
							
								18 73
							 | 
							rexlimddv | 
							⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  |