Step |
Hyp |
Ref |
Expression |
1 |
|
slwispgp.1 |
⊢ 𝑆 = ( 𝐺 ↾s 𝐾 ) |
2 |
|
isslw |
⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) |
3 |
2
|
simp3bi |
⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) |
4 |
|
sseq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝐻 ⊆ 𝑘 ↔ 𝐻 ⊆ 𝐾 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝐺 ↾s 𝑘 ) = ( 𝐺 ↾s 𝐾 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( 𝐺 ↾s 𝑘 ) = 𝑆 ) |
7 |
6
|
breq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ↔ 𝑃 pGrp 𝑆 ) ) |
8 |
4 7
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ( 𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆 ) ) ) |
9 |
|
eqeq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝐻 = 𝑘 ↔ 𝐻 = 𝐾 ) ) |
10 |
8 9
|
bibi12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ↔ ( ( 𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐾 ) ) ) |
11 |
10
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐾 ) ) |
12 |
3 11
|
sylan |
⊢ ( ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻 ⊆ 𝐾 ∧ 𝑃 pGrp 𝑆 ) ↔ 𝐻 = 𝐾 ) ) |