Step |
Hyp |
Ref |
Expression |
1 |
|
slwn0.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
3 |
2
|
0subg |
⊢ ( 𝐺 ∈ Grp → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
5 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) → 𝑋 ∈ Fin ) |
6 |
2
|
pgp0 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → 𝑃 pGrp ( 𝐺 ↾s { ( 0g ‘ 𝐺 ) } ) ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) → 𝑃 pGrp ( 𝐺 ↾s { ( 0g ‘ 𝐺 ) } ) ) |
8 |
|
eqid |
⊢ ( 𝐺 ↾s { ( 0g ‘ 𝐺 ) } ) = ( 𝐺 ↾s { ( 0g ‘ 𝐺 ) } ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝑃 pGrp ( 𝐺 ↾s 𝑦 ) ∧ { ( 0g ‘ 𝐺 ) } ⊆ 𝑦 ) } ↦ ( ♯ ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝑃 pGrp ( 𝐺 ↾s 𝑦 ) ∧ { ( 0g ‘ 𝐺 ) } ⊆ 𝑦 ) } ↦ ( ♯ ‘ 𝑥 ) ) |
10 |
1 8 9
|
pgpssslw |
⊢ ( ( { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ∧ 𝑃 pGrp ( 𝐺 ↾s { ( 0g ‘ 𝐺 ) } ) ) → ∃ 𝑧 ∈ ( 𝑃 pSyl 𝐺 ) { ( 0g ‘ 𝐺 ) } ⊆ 𝑧 ) |
11 |
4 5 7 10
|
syl3anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) → ∃ 𝑧 ∈ ( 𝑃 pSyl 𝐺 ) { ( 0g ‘ 𝐺 ) } ⊆ 𝑧 ) |
12 |
|
rexn0 |
⊢ ( ∃ 𝑧 ∈ ( 𝑃 pSyl 𝐺 ) { ( 0g ‘ 𝐺 ) } ⊆ 𝑧 → ( 𝑃 pSyl 𝐺 ) ≠ ∅ ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pSyl 𝐺 ) ≠ ∅ ) |