Metamath Proof Explorer


Theorem smadiadetlem1

Description: Lemma 1 for smadiadet : A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses marep01ma.a 𝐴 = ( 𝑁 Mat 𝑅 )
marep01ma.b 𝐵 = ( Base ‘ 𝐴 )
marep01ma.r 𝑅 ∈ CRing
marep01ma.0 0 = ( 0g𝑅 )
marep01ma.1 1 = ( 1r𝑅 )
smadiadetlem.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
smadiadetlem.g 𝐺 = ( mulGrp ‘ 𝑅 )
madetminlem.y 𝑌 = ( ℤRHom ‘ 𝑅 )
madetminlem.s 𝑆 = ( pmSgn ‘ 𝑁 )
madetminlem.t · = ( .r𝑅 )
Assertion smadiadetlem1 ( ( ( 𝑀𝐵𝐾𝑁 ) ∧ 𝑝𝑃 ) → ( ( ( 𝑌𝑆 ) ‘ 𝑝 ) ( .r𝑅 ) ( 𝐺 Σg ( 𝑛𝑁 ↦ ( 𝑛 ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝𝑛 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 marep01ma.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 marep01ma.b 𝐵 = ( Base ‘ 𝐴 )
3 marep01ma.r 𝑅 ∈ CRing
4 marep01ma.0 0 = ( 0g𝑅 )
5 marep01ma.1 1 = ( 1r𝑅 )
6 smadiadetlem.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
7 smadiadetlem.g 𝐺 = ( mulGrp ‘ 𝑅 )
8 madetminlem.y 𝑌 = ( ℤRHom ‘ 𝑅 )
9 madetminlem.s 𝑆 = ( pmSgn ‘ 𝑁 )
10 madetminlem.t · = ( .r𝑅 )
11 1 2 3 4 5 marep01ma ( 𝑀𝐵 → ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ∈ 𝐵 )
12 11 ad2antrr ( ( ( 𝑀𝐵𝐾𝑁 ) ∧ 𝑝𝑃 ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ∈ 𝐵 )
13 simpr ( ( ( 𝑀𝐵𝐾𝑁 ) ∧ 𝑝𝑃 ) → 𝑝𝑃 )
14 6 9 8 1 2 7 madetsmelbas2 ( ( 𝑅 ∈ CRing ∧ ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ∈ 𝐵𝑝𝑃 ) → ( ( ( 𝑌𝑆 ) ‘ 𝑝 ) ( .r𝑅 ) ( 𝐺 Σg ( 𝑛𝑁 ↦ ( 𝑛 ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝𝑛 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )
15 3 12 13 14 mp3an2i ( ( ( 𝑀𝐵𝐾𝑁 ) ∧ 𝑝𝑃 ) → ( ( ( 𝑌𝑆 ) ‘ 𝑝 ) ( .r𝑅 ) ( 𝐺 Σg ( 𝑛𝑁 ↦ ( 𝑛 ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝𝑛 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) )