| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							marep01ma.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							marep01ma.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							marep01ma.r | 
							⊢ 𝑅  ∈  CRing  | 
						
						
							| 4 | 
							
								
							 | 
							marep01ma.0 | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							marep01ma.1 | 
							⊢  1   =  ( 1r ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							smadiadetlem.p | 
							⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							smadiadetlem.g | 
							⊢ 𝐺  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							madetminlem.y | 
							⊢ 𝑌  =  ( ℤRHom ‘ 𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							madetminlem.s | 
							⊢ 𝑆  =  ( pmSgn ‘ 𝑁 )  | 
						
						
							| 10 | 
							
								
							 | 
							madetminlem.t | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5
							 | 
							marep01ma | 
							⊢ ( 𝑀  ∈  𝐵  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) )  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) )  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  𝑃 )  →  𝑝  ∈  𝑃 )  | 
						
						
							| 14 | 
							
								6 9 8 1 2 7
							 | 
							madetsmelbas2 | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) )  ∈  𝐵  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  ( 𝑛 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 15 | 
							
								3 12 13 14
							 | 
							mp3an2i | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  ( 𝑛 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) )  ∈  ( Base ‘ 𝑅 ) )  |