Description: Lemma 2 for smadiadet : The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | marep01ma.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
marep01ma.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
marep01ma.r | ⊢ 𝑅 ∈ CRing | ||
marep01ma.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
marep01ma.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
smadiadetlem.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | ||
smadiadetlem.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
madetminlem.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
madetminlem.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
madetminlem.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
Assertion | smadiadetlem2 | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑝 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
2 | marep01ma.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
3 | marep01ma.r | ⊢ 𝑅 ∈ CRing | |
4 | marep01ma.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
5 | marep01ma.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
6 | smadiadetlem.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
7 | smadiadetlem.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
8 | madetminlem.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
9 | madetminlem.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
10 | madetminlem.t | ⊢ · = ( .r ‘ 𝑅 ) | |
11 | 1 2 3 4 5 6 7 8 9 10 | smadiadetlem1a | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑝 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) ) = 0 ) |
12 | 11 | 3anidm23 | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑝 ∈ ( 𝑃 ∖ { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } ) ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐾 , 1 , 0 ) , ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) ) = 0 ) |