| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							marep01ma.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							marep01ma.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							marep01ma.r | 
							⊢ 𝑅  ∈  CRing  | 
						
						
							| 4 | 
							
								
							 | 
							marep01ma.0 | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							marep01ma.1 | 
							⊢  1   =  ( 1r ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							smadiadetlem.p | 
							⊢ 𝑃  =  ( Base ‘ ( SymGrp ‘ 𝑁 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							smadiadetlem.g | 
							⊢ 𝐺  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							madetminlem.y | 
							⊢ 𝑌  =  ( ℤRHom ‘ 𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							madetminlem.s | 
							⊢ 𝑆  =  ( pmSgn ‘ 𝑁 )  | 
						
						
							| 10 | 
							
								
							 | 
							madetminlem.t | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 11 | 
							
								
							 | 
							smadiadetlem.w | 
							⊢ 𝑊  =  ( Base ‘ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							smadiadetlem.z | 
							⊢ 𝑍  =  ( pmSgn ‘ ( 𝑁  ∖  { 𝐾 } ) )  | 
						
						
							| 13 | 
							
								7
							 | 
							crngmgp | 
							⊢ ( 𝑅  ∈  CRing  →  𝐺  ∈  CMnd )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							mp1i | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  𝐺  ∈  CMnd )  | 
						
						
							| 15 | 
							
								1 2
							 | 
							matrcl | 
							⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  V ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simpld | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑁  ∈  Fin )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  𝑁  ∈  Fin )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							jca | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  ( 𝐺  ∈  CMnd  ∧  𝑁  ∈  Fin ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( 𝐺  ∈  CMnd  ∧  𝑁  ∈  Fin ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 21 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 22 | 
							
								2
							 | 
							eleq2i | 
							⊢ ( 𝑀  ∈  𝐵  ↔  𝑀  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							biimpi | 
							⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  𝑀  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑀  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 27 | 
							
								1 26
							 | 
							matecl | 
							⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁  ∧  𝑀  ∈  ( Base ‘ 𝐴 ) )  →  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 28 | 
							
								20 21 25 27
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 29 | 
							
								7 26
							 | 
							mgpbas | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							eleqtrdi | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ralrimivva | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝐺 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							crngring | 
							⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring )  | 
						
						
							| 34 | 
							
								26 4
							 | 
							ring0cl | 
							⊢ ( 𝑅  ∈  Ring  →   0   ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 35 | 
							
								3 33 34
							 | 
							mp2b | 
							⊢  0   ∈  ( Base ‘ 𝑅 )  | 
						
						
							| 36 | 
							
								35 29
							 | 
							eleqtri | 
							⊢  0   ∈  ( Base ‘ 𝐺 )  | 
						
						
							| 37 | 
							
								32 36
							 | 
							jctir | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝐺 )  ∧   0   ∈  ( Base ‘ 𝐺 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  𝐾  ∈  𝑁 )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  𝐾  ∈  𝑁 )  | 
						
						
							| 40 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  | 
						
						
							| 41 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  =  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  | 
						
						
							| 42 | 
							
								7 5
							 | 
							ringidval | 
							⊢  1   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 43 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 44 | 
							
								6 41 42 43
							 | 
							gsummatr01 | 
							⊢ ( ( ( 𝐺  ∈  CMnd  ∧  𝑁  ∈  Fin )  ∧  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝐺 )  ∧   0   ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐾  ∈  𝑁  ∧  𝐾  ∈  𝑁  ∧  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } ) )  →  ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  ( 𝑛 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) )  =  ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑛 ( 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ,  𝑗  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) )  | 
						
						
							| 45 | 
							
								19 37 39 39 40 44
							 | 
							syl113anc | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  ( 𝑛 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) )  =  ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑛 ( 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ,  𝑗  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  ∧  𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 } )  →  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  ( 𝑛 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) )  =  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑛 ( 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ,  𝑗  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							mpteq2dva | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  ( 𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  ↦  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  ( 𝑛 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  ↦  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑛 ( 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ,  𝑗  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							oveq2d | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  ↦  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  ( 𝑛 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  ↦  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑛 ( 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ,  𝑗  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) ) )  | 
						
						
							| 49 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							smadiadetlem3 | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  ↦  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑛 ( 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ,  𝑗  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑝  ∈  𝑊  ↦  ( ( ( 𝑌  ∘  𝑍 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑛 ( 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ,  𝑗  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) ) )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							eqtrd | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑝  ∈  { 𝑞  ∈  𝑃  ∣  ( 𝑞 ‘ 𝐾 )  =  𝐾 }  ↦  ( ( ( 𝑌  ∘  𝑆 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  ( 𝑛 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝐾 ,  if ( 𝑗  =  𝐾 ,   1  ,   0  ) ,  ( 𝑖 𝑀 𝑗 ) ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑝  ∈  𝑊  ↦  ( ( ( 𝑌  ∘  𝑍 ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑛 ( 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ,  𝑗  ∈  ( 𝑁  ∖  { 𝐾 } )  ↦  ( 𝑖 𝑀 𝑗 ) ) ( 𝑝 ‘ 𝑛 ) ) ) ) ) ) ) )  |