| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smgrpassOLD.1 | ⊢ 𝑋  =  dom  dom  𝐺 | 
						
							| 2 | 1 | issmgrpOLD | ⊢ ( 𝐺  ∈  SemiGrp  →  ( 𝐺  ∈  SemiGrp  ↔  ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐺 : ( 𝑋  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) | 
						
							| 4 | 2 3 | biimtrdi | ⊢ ( 𝐺  ∈  SemiGrp  →  ( 𝐺  ∈  SemiGrp  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) | 
						
							| 5 | 4 | pm2.43i | ⊢ ( 𝐺  ∈  SemiGrp  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 )  =  ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) |