Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | smgrpmgm.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| Assertion | smgrpmgm | ⊢ ( 𝐺 ∈ SemiGrp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | smgrpmgm.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| 2 | 1 | issmgrpOLD | ⊢ ( 𝐺 ∈ SemiGrp → ( 𝐺 ∈ SemiGrp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) ) | 
| 3 | simpl | ⊢ ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) | |
| 4 | 2 3 | biimtrdi | ⊢ ( 𝐺 ∈ SemiGrp → ( 𝐺 ∈ SemiGrp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) ) | 
| 5 | 4 | pm2.43i | ⊢ ( 𝐺 ∈ SemiGrp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |