Metamath Proof Explorer


Theorem smgrpmgm

Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)

Ref Expression
Hypothesis smgrpmgm.1 𝑋 = dom dom 𝐺
Assertion smgrpmgm ( 𝐺 ∈ SemiGrp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )

Proof

Step Hyp Ref Expression
1 smgrpmgm.1 𝑋 = dom dom 𝐺
2 1 issmgrpOLD ( 𝐺 ∈ SemiGrp → ( 𝐺 ∈ SemiGrp ↔ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) ) )
3 simpl ( ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋𝑦𝑋𝑧𝑋 ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) ) → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )
4 2 3 syl6bi ( 𝐺 ∈ SemiGrp → ( 𝐺 ∈ SemiGrp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) )
5 4 pm2.43i ( 𝐺 ∈ SemiGrp → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 )