| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
| 2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
| 3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
| 4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
| 5 |
|
elfzonn0 |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ℕ0 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
| 7 |
6
|
ralrimiva |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ∀ 𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ) |
| 8 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) |
| 9 |
8
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ↔ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 10 |
7 9
|
sylib |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 11 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 12 |
11 11
|
elmap |
⊢ ( ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ ( ℕ0 ↑m ℕ0 ) ↔ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 13 |
10 12
|
sylibr |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ ( ℕ0 ↑m ℕ0 ) ) |
| 14 |
4
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) ) |
| 15 |
|
id |
⊢ ( 𝑛 = 𝐾 → 𝑛 = 𝐾 ) |
| 16 |
15
|
mpteq2dv |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 18 |
|
id |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) |
| 19 |
11
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
| 20 |
19
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
| 21 |
14 17 18 20
|
fvmptd |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 23 |
1 22
|
efmndbas |
⊢ ( Base ‘ 𝑀 ) = ( ℕ0 ↑m ℕ0 ) |
| 24 |
23
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( Base ‘ 𝑀 ) = ( ℕ0 ↑m ℕ0 ) ) |
| 25 |
13 21 24
|
3eltr4d |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) ) |