| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex1ibas.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | smndex1ibas.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) | 
						
							| 4 |  | smndex1ibas.g | ⊢ 𝐺  =  ( 𝑛  ∈  ( 0 ..^ 𝑁 )  ↦  ( 𝑥  ∈  ℕ0  ↦  𝑛 ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  𝐺  =  ( 𝑛  ∈  ( 0 ..^ 𝑁 )  ↦  ( 𝑥  ∈  ℕ0  ↦  𝑛 ) ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑛  =  𝐾  →  𝑛  =  𝐾 ) | 
						
							| 7 | 6 | mpteq2dv | ⊢ ( 𝑛  =  𝐾  →  ( 𝑥  ∈  ℕ0  ↦  𝑛 )  =  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐾  ∈  ( 0 ..^ 𝑁 )  ∧  𝑛  =  𝐾 )  →  ( 𝑥  ∈  ℕ0  ↦  𝑛 )  =  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 9 |  | id | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  𝐾  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 10 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 11 | 10 | mptex | ⊢ ( 𝑥  ∈  ℕ0  ↦  𝐾 )  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑥  ∈  ℕ0  ↦  𝐾 )  ∈  V ) | 
						
							| 13 | 5 8 9 12 | fvmptd | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝐾 )  =  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐺 ‘ 𝐾 )  =  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝐾 )  =  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 16 |  | eqidd | ⊢ ( ( ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  =  ( 𝐹 ‘ 𝑦 ) )  →  𝐾  =  𝐾 ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 18 | 1 17 | efmndbasf | ⊢ ( 𝐹  ∈  ( Base ‘ 𝑀 )  →  𝐹 : ℕ0 ⟶ ℕ0 ) | 
						
							| 19 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝐹 : ℕ0 ⟶ ℕ0  →  ( 𝑦  ∈  ℕ0  →  ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) ) | 
						
							| 21 | 18 20 | syl | ⊢ ( 𝐹  ∈  ( Base ‘ 𝑀 )  →  ( 𝑦  ∈  ℕ0  →  ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝑦  ∈  ℕ0  →  ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 24 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ℕ0 )  →  𝐾  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 25 | 15 16 23 24 | fvmptd | ⊢ ( ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) )  =  𝐾 ) | 
						
							| 26 | 25 | mpteq2dva | ⊢ ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝑦  ∈  ℕ0  ↦  ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 27 | 1 2 3 4 | smndex1gbas | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝐾 )  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 28 | 1 17 | efmndbasf | ⊢ ( ( 𝐺 ‘ 𝐾 )  ∈  ( Base ‘ 𝑀 )  →  ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ) | 
						
							| 30 |  | fcompt | ⊢ ( ( ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0  ∧  𝐹 : ℕ0 ⟶ ℕ0 )  →  ( ( 𝐺 ‘ 𝐾 )  ∘  𝐹 )  =  ( 𝑦  ∈  ℕ0  ↦  ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 31 | 29 18 30 | syl2anr | ⊢ ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ 𝐾 )  ∘  𝐹 )  =  ( 𝑦  ∈  ℕ0  ↦  ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 32 |  | eqidd | ⊢ ( 𝑥  =  𝑦  →  𝐾  =  𝐾 ) | 
						
							| 33 | 32 | cbvmptv | ⊢ ( 𝑥  ∈  ℕ0  ↦  𝐾 )  =  ( 𝑦  ∈  ℕ0  ↦  𝐾 ) | 
						
							| 34 | 7 33 | eqtrdi | ⊢ ( 𝑛  =  𝐾  →  ( 𝑥  ∈  ℕ0  ↦  𝑛 )  =  ( 𝑦  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝐾  ∈  ( 0 ..^ 𝑁 )  ∧  𝑛  =  𝐾 )  →  ( 𝑥  ∈  ℕ0  ↦  𝑛 )  =  ( 𝑦  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 36 | 10 | mptex | ⊢ ( 𝑦  ∈  ℕ0  ↦  𝐾 )  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑦  ∈  ℕ0  ↦  𝐾 )  ∈  V ) | 
						
							| 38 | 5 35 9 37 | fvmptd | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝐾 )  =  ( 𝑦  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐺 ‘ 𝐾 )  =  ( 𝑦  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 40 | 26 31 39 | 3eqtr4d | ⊢ ( ( 𝐹  ∈  ( Base ‘ 𝑀 )  ∧  𝐾  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ 𝐾 )  ∘  𝐹 )  =  ( 𝐺 ‘ 𝐾 ) ) |