| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex1ibas.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | smndex1ibas.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) )  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) | 
						
							| 5 |  | nn0z | ⊢ ( 𝑥  ∈  ℕ0  →  𝑥  ∈  ℤ ) | 
						
							| 6 | 2 | a1i | ⊢ ( 𝑥  ∈  ℕ0  →  𝑁  ∈  ℕ ) | 
						
							| 7 | 5 6 | zmodcld | ⊢ ( 𝑥  ∈  ℕ0  →  ( 𝑥  mod  𝑁 )  ∈  ℕ0 ) | 
						
							| 8 | 4 7 | fmpti | ⊢ ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) : ℕ0 ⟶ ℕ0 | 
						
							| 9 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 10 | 9 9 | elmap | ⊢ ( ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) )  ∈  ( ℕ0  ↑m  ℕ0 )  ↔  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) : ℕ0 ⟶ ℕ0 ) | 
						
							| 11 | 8 10 | mpbir | ⊢ ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) )  ∈  ( ℕ0  ↑m  ℕ0 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 13 | 1 12 | efmndbas | ⊢ ( Base ‘ 𝑀 )  =  ( ℕ0  ↑m  ℕ0 ) | 
						
							| 14 | 11 3 13 | 3eltr4i | ⊢ 𝐼  ∈  ( Base ‘ 𝑀 ) |