Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
5 |
|
smndex1mgm.b |
⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
6 |
|
smndex1mgm.s |
⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) |
7 |
|
nn0ex |
⊢ ℕ0 ∈ V |
8 |
7
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) ∈ V |
9 |
3 8
|
eqeltri |
⊢ 𝐼 ∈ V |
10 |
9
|
snid |
⊢ 𝐼 ∈ { 𝐼 } |
11 |
|
elun1 |
⊢ ( 𝐼 ∈ { 𝐼 } → 𝐼 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
12 |
10 11
|
ax-mp |
⊢ 𝐼 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
13 |
12 5
|
eleqtrri |
⊢ 𝐼 ∈ 𝐵 |
14 |
1 2 3 4 5 6
|
smndex1bas |
⊢ ( Base ‘ 𝑆 ) = 𝐵 |
15 |
14
|
eqcomi |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
16 |
15
|
a1i |
⊢ ( 𝐼 ∈ 𝐵 → 𝐵 = ( Base ‘ 𝑆 ) ) |
17 |
|
snex |
⊢ { 𝐼 } ∈ V |
18 |
|
ovex |
⊢ ( 0 ..^ 𝑁 ) ∈ V |
19 |
|
snex |
⊢ { ( 𝐺 ‘ 𝑛 ) } ∈ V |
20 |
18 19
|
iunex |
⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ∈ V |
21 |
17 20
|
unex |
⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ∈ V |
22 |
5 21
|
eqeltri |
⊢ 𝐵 ∈ V |
23 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
24 |
6 23
|
ressplusg |
⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
25 |
22 24
|
mp1i |
⊢ ( 𝐼 ∈ 𝐵 → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
26 |
|
id |
⊢ ( 𝐼 ∈ 𝐵 → 𝐼 ∈ 𝐵 ) |
27 |
1 2 3
|
smndex1ibas |
⊢ 𝐼 ∈ ( Base ‘ 𝑀 ) |
28 |
27
|
a1i |
⊢ ( 𝐼 ∈ 𝐵 → 𝐼 ∈ ( Base ‘ 𝑀 ) ) |
29 |
1 2 3 4 5
|
smndex1basss |
⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
30 |
29
|
sseli |
⊢ ( 𝑎 ∈ 𝐵 → 𝑎 ∈ ( Base ‘ 𝑀 ) ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
32 |
1 31 23
|
efmndov |
⊢ ( ( 𝐼 ∈ ( Base ‘ 𝑀 ) ∧ 𝑎 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 ) = ( 𝐼 ∘ 𝑎 ) ) |
33 |
28 30 32
|
syl2an |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 ) = ( 𝐼 ∘ 𝑎 ) ) |
34 |
1 2 3 4 5 6
|
smndex1mndlem |
⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝐼 ∘ 𝑎 ) = 𝑎 ∧ ( 𝑎 ∘ 𝐼 ) = 𝑎 ) ) |
35 |
34
|
simpld |
⊢ ( 𝑎 ∈ 𝐵 → ( 𝐼 ∘ 𝑎 ) = 𝑎 ) |
36 |
35
|
adantl |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐼 ∘ 𝑎 ) = 𝑎 ) |
37 |
33 36
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ) |
38 |
1 31 23
|
efmndov |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝐼 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 ) = ( 𝑎 ∘ 𝐼 ) ) |
39 |
30 28 38
|
syl2anr |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 ) = ( 𝑎 ∘ 𝐼 ) ) |
40 |
34
|
simprd |
⊢ ( 𝑎 ∈ 𝐵 → ( 𝑎 ∘ 𝐼 ) = 𝑎 ) |
41 |
40
|
adantl |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ∘ 𝐼 ) = 𝑎 ) |
42 |
39 41
|
eqtrd |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 ) = 𝑎 ) |
43 |
16 25 26 37 42
|
grpidd |
⊢ ( 𝐼 ∈ 𝐵 → 𝐼 = ( 0g ‘ 𝑆 ) ) |
44 |
13 43
|
ax-mp |
⊢ 𝐼 = ( 0g ‘ 𝑆 ) |