| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex1ibas.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | smndex1ibas.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) | 
						
							| 4 |  | smndex1ibas.g | ⊢ 𝐺  =  ( 𝑛  ∈  ( 0 ..^ 𝑁 )  ↦  ( 𝑥  ∈  ℕ0  ↦  𝑛 ) ) | 
						
							| 5 |  | smndex1mgm.b | ⊢ 𝐵  =  ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | 
						
							| 6 |  | smndex1mgm.s | ⊢ 𝑆  =  ( 𝑀  ↾s  𝐵 ) | 
						
							| 7 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 8 | 7 | mptex | ⊢ ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) )  ∈  V | 
						
							| 9 | 3 8 | eqeltri | ⊢ 𝐼  ∈  V | 
						
							| 10 | 9 | snid | ⊢ 𝐼  ∈  { 𝐼 } | 
						
							| 11 |  | elun1 | ⊢ ( 𝐼  ∈  { 𝐼 }  →  𝐼  ∈  ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ 𝐼  ∈  ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | 
						
							| 13 | 12 5 | eleqtrri | ⊢ 𝐼  ∈  𝐵 | 
						
							| 14 | 1 2 3 4 5 6 | smndex1bas | ⊢ ( Base ‘ 𝑆 )  =  𝐵 | 
						
							| 15 | 14 | eqcomi | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐼  ∈  𝐵  →  𝐵  =  ( Base ‘ 𝑆 ) ) | 
						
							| 17 |  | snex | ⊢ { 𝐼 }  ∈  V | 
						
							| 18 |  | ovex | ⊢ ( 0 ..^ 𝑁 )  ∈  V | 
						
							| 19 |  | snex | ⊢ { ( 𝐺 ‘ 𝑛 ) }  ∈  V | 
						
							| 20 | 18 19 | iunex | ⊢ ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) }  ∈  V | 
						
							| 21 | 17 20 | unex | ⊢ ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } )  ∈  V | 
						
							| 22 | 5 21 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 23 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 24 | 6 23 | ressplusg | ⊢ ( 𝐵  ∈  V  →  ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 25 | 22 24 | mp1i | ⊢ ( 𝐼  ∈  𝐵  →  ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 26 |  | id | ⊢ ( 𝐼  ∈  𝐵  →  𝐼  ∈  𝐵 ) | 
						
							| 27 | 1 2 3 | smndex1ibas | ⊢ 𝐼  ∈  ( Base ‘ 𝑀 ) | 
						
							| 28 | 27 | a1i | ⊢ ( 𝐼  ∈  𝐵  →  𝐼  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 29 | 1 2 3 4 5 | smndex1basss | ⊢ 𝐵  ⊆  ( Base ‘ 𝑀 ) | 
						
							| 30 | 29 | sseli | ⊢ ( 𝑎  ∈  𝐵  →  𝑎  ∈  ( Base ‘ 𝑀 ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 32 | 1 31 23 | efmndov | ⊢ ( ( 𝐼  ∈  ( Base ‘ 𝑀 )  ∧  𝑎  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 )  =  ( 𝐼  ∘  𝑎 ) ) | 
						
							| 33 | 28 30 32 | syl2an | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  →  ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 )  =  ( 𝐼  ∘  𝑎 ) ) | 
						
							| 34 | 1 2 3 4 5 6 | smndex1mndlem | ⊢ ( 𝑎  ∈  𝐵  →  ( ( 𝐼  ∘  𝑎 )  =  𝑎  ∧  ( 𝑎  ∘  𝐼 )  =  𝑎 ) ) | 
						
							| 35 | 34 | simpld | ⊢ ( 𝑎  ∈  𝐵  →  ( 𝐼  ∘  𝑎 )  =  𝑎 ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  →  ( 𝐼  ∘  𝑎 )  =  𝑎 ) | 
						
							| 37 | 33 36 | eqtrd | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  →  ( 𝐼 ( +g ‘ 𝑀 ) 𝑎 )  =  𝑎 ) | 
						
							| 38 | 1 31 23 | efmndov | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝐼  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 )  =  ( 𝑎  ∘  𝐼 ) ) | 
						
							| 39 | 30 28 38 | syl2anr | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 )  =  ( 𝑎  ∘  𝐼 ) ) | 
						
							| 40 | 34 | simprd | ⊢ ( 𝑎  ∈  𝐵  →  ( 𝑎  ∘  𝐼 )  =  𝑎 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎  ∘  𝐼 )  =  𝑎 ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝑎  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝐼 )  =  𝑎 ) | 
						
							| 43 | 16 25 26 37 42 | grpidd | ⊢ ( 𝐼  ∈  𝐵  →  𝐼  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 44 | 13 43 | ax-mp | ⊢ 𝐼  =  ( 0g ‘ 𝑆 ) |