Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
5 |
|
fconstmpt |
⊢ ( ℕ0 × { 𝐾 } ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) |
6 |
5
|
eqcomi |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( ℕ0 × { 𝐾 } ) |
7 |
6
|
a1i |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( ℕ0 × { 𝐾 } ) ) |
8 |
7
|
coeq2d |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) = ( 𝐼 ∘ ( ℕ0 × { 𝐾 } ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝑛 = 𝐾 ∧ 𝑥 ∈ ℕ0 ) → 𝑛 = 𝐾 ) |
10 |
9
|
mpteq2dva |
⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
11 |
|
nn0ex |
⊢ ℕ0 ∈ V |
12 |
11
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
13 |
10 4 12
|
fvmpt |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
14 |
13
|
coeq2d |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝐺 ‘ 𝐾 ) ) = ( 𝐼 ∘ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) ) |
15 |
|
oveq1 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 mod 𝑁 ) = ( 𝐾 mod 𝑁 ) ) |
16 |
|
zmodidfzoimp |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐾 mod 𝑁 ) = 𝐾 ) |
17 |
15 16
|
sylan9eqr |
⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 = 𝐾 ) → ( 𝑥 mod 𝑁 ) = 𝐾 ) |
18 |
|
elfzonn0 |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ℕ0 ) |
19 |
3 17 18 18
|
fvmptd2 |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ‘ 𝐾 ) = 𝐾 ) |
20 |
19
|
eqcomd |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 = ( 𝐼 ‘ 𝐾 ) ) |
21 |
20
|
sneqd |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → { 𝐾 } = { ( 𝐼 ‘ 𝐾 ) } ) |
22 |
21
|
xpeq2d |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( ℕ0 × { 𝐾 } ) = ( ℕ0 × { ( 𝐼 ‘ 𝐾 ) } ) ) |
23 |
13 6
|
eqtrdi |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( ℕ0 × { 𝐾 } ) ) |
24 |
|
ovex |
⊢ ( 𝑥 mod 𝑁 ) ∈ V |
25 |
24 3
|
fnmpti |
⊢ 𝐼 Fn ℕ0 |
26 |
|
fcoconst |
⊢ ( ( 𝐼 Fn ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐼 ∘ ( ℕ0 × { 𝐾 } ) ) = ( ℕ0 × { ( 𝐼 ‘ 𝐾 ) } ) ) |
27 |
25 18 26
|
sylancr |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( ℕ0 × { 𝐾 } ) ) = ( ℕ0 × { ( 𝐼 ‘ 𝐾 ) } ) ) |
28 |
22 23 27
|
3eqtr4d |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝐼 ∘ ( ℕ0 × { 𝐾 } ) ) ) |
29 |
8 14 28
|
3eqtr4d |
⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝐺 ‘ 𝐾 ) ) = ( 𝐺 ‘ 𝐾 ) ) |