| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex1ibas.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | smndex1ibas.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) | 
						
							| 4 |  | smndex1ibas.g | ⊢ 𝐺  =  ( 𝑛  ∈  ( 0 ..^ 𝑁 )  ↦  ( 𝑥  ∈  ℕ0  ↦  𝑛 ) ) | 
						
							| 5 |  | fconstmpt | ⊢ ( ℕ0  ×  { 𝐾 } )  =  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) | 
						
							| 6 | 5 | eqcomi | ⊢ ( 𝑥  ∈  ℕ0  ↦  𝐾 )  =  ( ℕ0  ×  { 𝐾 } ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝑥  ∈  ℕ0  ↦  𝐾 )  =  ( ℕ0  ×  { 𝐾 } ) ) | 
						
							| 8 | 7 | coeq2d | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐼  ∘  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) )  =  ( 𝐼  ∘  ( ℕ0  ×  { 𝐾 } ) ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑛  =  𝐾  ∧  𝑥  ∈  ℕ0 )  →  𝑛  =  𝐾 ) | 
						
							| 10 | 9 | mpteq2dva | ⊢ ( 𝑛  =  𝐾  →  ( 𝑥  ∈  ℕ0  ↦  𝑛 )  =  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 11 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 12 | 11 | mptex | ⊢ ( 𝑥  ∈  ℕ0  ↦  𝐾 )  ∈  V | 
						
							| 13 | 10 4 12 | fvmpt | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝐾 )  =  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) ) | 
						
							| 14 | 13 | coeq2d | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐼  ∘  ( 𝐺 ‘ 𝐾 ) )  =  ( 𝐼  ∘  ( 𝑥  ∈  ℕ0  ↦  𝐾 ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑥  =  𝐾  →  ( 𝑥  mod  𝑁 )  =  ( 𝐾  mod  𝑁 ) ) | 
						
							| 16 |  | zmodidfzoimp | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐾  mod  𝑁 )  =  𝐾 ) | 
						
							| 17 | 15 16 | sylan9eqr | ⊢ ( ( 𝐾  ∈  ( 0 ..^ 𝑁 )  ∧  𝑥  =  𝐾 )  →  ( 𝑥  mod  𝑁 )  =  𝐾 ) | 
						
							| 18 |  | elfzonn0 | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 19 | 3 17 18 18 | fvmptd2 | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐼 ‘ 𝐾 )  =  𝐾 ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  𝐾  =  ( 𝐼 ‘ 𝐾 ) ) | 
						
							| 21 | 20 | sneqd | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  { 𝐾 }  =  { ( 𝐼 ‘ 𝐾 ) } ) | 
						
							| 22 | 21 | xpeq2d | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( ℕ0  ×  { 𝐾 } )  =  ( ℕ0  ×  { ( 𝐼 ‘ 𝐾 ) } ) ) | 
						
							| 23 | 13 6 | eqtrdi | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝐾 )  =  ( ℕ0  ×  { 𝐾 } ) ) | 
						
							| 24 |  | ovex | ⊢ ( 𝑥  mod  𝑁 )  ∈  V | 
						
							| 25 | 24 3 | fnmpti | ⊢ 𝐼  Fn  ℕ0 | 
						
							| 26 |  | fcoconst | ⊢ ( ( 𝐼  Fn  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐼  ∘  ( ℕ0  ×  { 𝐾 } ) )  =  ( ℕ0  ×  { ( 𝐼 ‘ 𝐾 ) } ) ) | 
						
							| 27 | 25 18 26 | sylancr | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐼  ∘  ( ℕ0  ×  { 𝐾 } ) )  =  ( ℕ0  ×  { ( 𝐼 ‘ 𝐾 ) } ) ) | 
						
							| 28 | 22 23 27 | 3eqtr4d | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐺 ‘ 𝐾 )  =  ( 𝐼  ∘  ( ℕ0  ×  { 𝐾 } ) ) ) | 
						
							| 29 | 8 14 28 | 3eqtr4d | ⊢ ( 𝐾  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐼  ∘  ( 𝐺 ‘ 𝐾 ) )  =  ( 𝐺 ‘ 𝐾 ) ) |