| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex1ibas.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | smndex1ibas.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) | 
						
							| 4 |  | nn0re | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℝ ) | 
						
							| 5 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 6 | 2 5 | ax-mp | ⊢ 𝑁  ∈  ℝ+ | 
						
							| 7 |  | modabs2 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑁  ∈  ℝ+ )  →  ( ( 𝑦  mod  𝑁 )  mod  𝑁 )  =  ( 𝑦  mod  𝑁 ) ) | 
						
							| 8 | 4 6 7 | sylancl | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( 𝑦  mod  𝑁 )  mod  𝑁 )  =  ( 𝑦  mod  𝑁 ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝑦  ∈  ℕ0  →  ( 𝑦  mod  𝑁 )  =  ( ( 𝑦  mod  𝑁 )  mod  𝑁 ) ) | 
						
							| 10 | 9 | mpteq2ia | ⊢ ( 𝑦  ∈  ℕ0  ↦  ( 𝑦  mod  𝑁 ) )  =  ( 𝑦  ∈  ℕ0  ↦  ( ( 𝑦  mod  𝑁 )  mod  𝑁 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  mod  𝑁 )  =  ( 𝑦  mod  𝑁 ) ) | 
						
							| 12 | 11 | cbvmptv | ⊢ ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) )  =  ( 𝑦  ∈  ℕ0  ↦  ( 𝑦  mod  𝑁 ) ) | 
						
							| 13 | 3 12 | eqtri | ⊢ 𝐼  =  ( 𝑦  ∈  ℕ0  ↦  ( 𝑦  mod  𝑁 ) ) | 
						
							| 14 |  | nn0z | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℤ ) | 
						
							| 15 | 14 | anim2i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑁  ∈  ℕ  ∧  𝑦  ∈  ℤ ) ) | 
						
							| 16 | 15 | ancomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑦  ∈  ℤ  ∧  𝑁  ∈  ℕ ) ) | 
						
							| 17 |  | zmodcl | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝑦  mod  𝑁 )  ∈  ℕ0 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑦  mod  𝑁 )  ∈  ℕ0 ) | 
						
							| 19 | 13 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  𝐼  =  ( 𝑦  ∈  ℕ0  ↦  ( 𝑦  mod  𝑁 ) ) ) | 
						
							| 20 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  𝐼  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  mod  𝑁 )  →  ( 𝑥  mod  𝑁 )  =  ( ( 𝑦  mod  𝑁 )  mod  𝑁 ) ) | 
						
							| 22 | 18 19 20 21 | fmptco | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐼  ∘  𝐼 )  =  ( 𝑦  ∈  ℕ0  ↦  ( ( 𝑦  mod  𝑁 )  mod  𝑁 ) ) ) | 
						
							| 23 | 2 22 | ax-mp | ⊢ ( 𝐼  ∘  𝐼 )  =  ( 𝑦  ∈  ℕ0  ↦  ( ( 𝑦  mod  𝑁 )  mod  𝑁 ) ) | 
						
							| 24 | 10 13 23 | 3eqtr4ri | ⊢ ( 𝐼  ∘  𝐼 )  =  𝐼 |