Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) |
2 |
|
smndex1ibas.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
smndex1ibas.i |
⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) |
4 |
|
smndex1ibas.g |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) |
5 |
|
smndex1mgm.b |
⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
6 |
|
smndex1mgm.s |
⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) |
7 |
1 2 3 4 5 6
|
smndex1sgrp |
⊢ 𝑆 ∈ Smgrp |
8 |
|
nn0ex |
⊢ ℕ0 ∈ V |
9 |
8
|
mptex |
⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) ∈ V |
10 |
3 9
|
eqeltri |
⊢ 𝐼 ∈ V |
11 |
10
|
snid |
⊢ 𝐼 ∈ { 𝐼 } |
12 |
|
elun1 |
⊢ ( 𝐼 ∈ { 𝐼 } → 𝐼 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
13 |
11 12
|
ax-mp |
⊢ 𝐼 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) |
14 |
13 5
|
eleqtrri |
⊢ 𝐼 ∈ 𝐵 |
15 |
|
id |
⊢ ( 𝐼 ∈ 𝐵 → 𝐼 ∈ 𝐵 ) |
16 |
|
coeq1 |
⊢ ( 𝑎 = 𝐼 → ( 𝑎 ∘ 𝑏 ) = ( 𝐼 ∘ 𝑏 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ↔ ( 𝐼 ∘ 𝑏 ) = 𝑏 ) ) |
18 |
|
coeq2 |
⊢ ( 𝑎 = 𝐼 → ( 𝑏 ∘ 𝑎 ) = ( 𝑏 ∘ 𝐼 ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑏 ∘ 𝑎 ) = 𝑏 ↔ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) |
20 |
17 19
|
anbi12d |
⊢ ( 𝑎 = 𝐼 → ( ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ↔ ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑎 = 𝐼 → ( ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑎 = 𝐼 ) → ( ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) ) |
23 |
1 2 3 4 5 6
|
smndex1mndlem |
⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) |
24 |
23
|
rgen |
⊢ ∀ 𝑏 ∈ 𝐵 ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) |
25 |
24
|
a1i |
⊢ ( 𝐼 ∈ 𝐵 → ∀ 𝑏 ∈ 𝐵 ( ( 𝐼 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝐼 ) = 𝑏 ) ) |
26 |
15 22 25
|
rspcedvd |
⊢ ( 𝐼 ∈ 𝐵 → ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) |
27 |
14 26
|
ax-mp |
⊢ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) |
28 |
1 2 3 4 5
|
smndex1basss |
⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
29 |
|
ssel |
⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( 𝑎 ∈ 𝐵 → 𝑎 ∈ ( Base ‘ 𝑀 ) ) ) |
30 |
|
ssel |
⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) |
31 |
29 30
|
anim12d |
⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) ) |
32 |
28 31
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
34 |
|
snex |
⊢ { 𝐼 } ∈ V |
35 |
|
ovex |
⊢ ( 0 ..^ 𝑁 ) ∈ V |
36 |
|
snex |
⊢ { ( 𝐺 ‘ 𝑛 ) } ∈ V |
37 |
35 36
|
iunex |
⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ∈ V |
38 |
34 37
|
unex |
⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ∈ V |
39 |
5 38
|
eqeltri |
⊢ 𝐵 ∈ V |
40 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
41 |
6 40
|
ressplusg |
⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
42 |
39 41
|
ax-mp |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) |
43 |
42
|
eqcomi |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑀 ) |
44 |
1 33 43
|
efmndov |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = ( 𝑎 ∘ 𝑏 ) ) |
45 |
44
|
eqeq1d |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ↔ ( 𝑎 ∘ 𝑏 ) = 𝑏 ) ) |
46 |
43
|
oveqi |
⊢ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 ) |
47 |
1 33 40
|
efmndov |
⊢ ( ( 𝑏 ∈ ( Base ‘ 𝑀 ) ∧ 𝑎 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 ) = ( 𝑏 ∘ 𝑎 ) ) |
48 |
47
|
ancoms |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 ) = ( 𝑏 ∘ 𝑎 ) ) |
49 |
46 48
|
eqtrid |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = ( 𝑏 ∘ 𝑎 ) ) |
50 |
49
|
eqeq1d |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ↔ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) |
51 |
45 50
|
anbi12d |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ↔ ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) ) |
52 |
32 51
|
syl |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ↔ ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) ) |
53 |
52
|
ralbidva |
⊢ ( 𝑎 ∈ 𝐵 → ( ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) ) |
54 |
53
|
rexbiia |
⊢ ( ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ↔ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ∘ 𝑏 ) = 𝑏 ∧ ( 𝑏 ∘ 𝑎 ) = 𝑏 ) ) |
55 |
27 54
|
mpbir |
⊢ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) |
56 |
1 2 3 4 5 6
|
smndex1bas |
⊢ ( Base ‘ 𝑆 ) = 𝐵 |
57 |
56
|
eqcomi |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
58 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
59 |
57 58
|
ismnddef |
⊢ ( 𝑆 ∈ Mnd ↔ ( 𝑆 ∈ Smgrp ∧ ∃ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = 𝑏 ∧ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 ) = 𝑏 ) ) ) |
60 |
7 55 59
|
mpbir2an |
⊢ 𝑆 ∈ Mnd |