| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex1ibas.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | smndex1ibas.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) | 
						
							| 4 |  | smndex1ibas.g | ⊢ 𝐺  =  ( 𝑛  ∈  ( 0 ..^ 𝑁 )  ↦  ( 𝑥  ∈  ℕ0  ↦  𝑛 ) ) | 
						
							| 5 |  | smndex1mgm.b | ⊢ 𝐵  =  ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | 
						
							| 6 |  | smndex1mgm.s | ⊢ 𝑆  =  ( 𝑀  ↾s  𝐵 ) | 
						
							| 7 | 1 2 3 4 5 6 | smndex1sgrp | ⊢ 𝑆  ∈  Smgrp | 
						
							| 8 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 9 | 8 | mptex | ⊢ ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) )  ∈  V | 
						
							| 10 | 3 9 | eqeltri | ⊢ 𝐼  ∈  V | 
						
							| 11 | 10 | snid | ⊢ 𝐼  ∈  { 𝐼 } | 
						
							| 12 |  | elun1 | ⊢ ( 𝐼  ∈  { 𝐼 }  →  𝐼  ∈  ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ 𝐼  ∈  ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | 
						
							| 14 | 13 5 | eleqtrri | ⊢ 𝐼  ∈  𝐵 | 
						
							| 15 |  | id | ⊢ ( 𝐼  ∈  𝐵  →  𝐼  ∈  𝐵 ) | 
						
							| 16 |  | coeq1 | ⊢ ( 𝑎  =  𝐼  →  ( 𝑎  ∘  𝑏 )  =  ( 𝐼  ∘  𝑏 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑎  =  𝐼  →  ( ( 𝑎  ∘  𝑏 )  =  𝑏  ↔  ( 𝐼  ∘  𝑏 )  =  𝑏 ) ) | 
						
							| 18 |  | coeq2 | ⊢ ( 𝑎  =  𝐼  →  ( 𝑏  ∘  𝑎 )  =  ( 𝑏  ∘  𝐼 ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝑎  =  𝐼  →  ( ( 𝑏  ∘  𝑎 )  =  𝑏  ↔  ( 𝑏  ∘  𝐼 )  =  𝑏 ) ) | 
						
							| 20 | 17 19 | anbi12d | ⊢ ( 𝑎  =  𝐼  →  ( ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 )  ↔  ( ( 𝐼  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝐼 )  =  𝑏 ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑎  =  𝐼  →  ( ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 )  ↔  ∀ 𝑏  ∈  𝐵 ( ( 𝐼  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝐼 )  =  𝑏 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝐼  ∈  𝐵  ∧  𝑎  =  𝐼 )  →  ( ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 )  ↔  ∀ 𝑏  ∈  𝐵 ( ( 𝐼  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝐼 )  =  𝑏 ) ) ) | 
						
							| 23 | 1 2 3 4 5 6 | smndex1mndlem | ⊢ ( 𝑏  ∈  𝐵  →  ( ( 𝐼  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝐼 )  =  𝑏 ) ) | 
						
							| 24 | 23 | rgen | ⊢ ∀ 𝑏  ∈  𝐵 ( ( 𝐼  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝐼 )  =  𝑏 ) | 
						
							| 25 | 24 | a1i | ⊢ ( 𝐼  ∈  𝐵  →  ∀ 𝑏  ∈  𝐵 ( ( 𝐼  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝐼 )  =  𝑏 ) ) | 
						
							| 26 | 15 22 25 | rspcedvd | ⊢ ( 𝐼  ∈  𝐵  →  ∃ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 ) ) | 
						
							| 27 | 14 26 | ax-mp | ⊢ ∃ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 ) | 
						
							| 28 | 1 2 3 4 5 | smndex1basss | ⊢ 𝐵  ⊆  ( Base ‘ 𝑀 ) | 
						
							| 29 |  | ssel | ⊢ ( 𝐵  ⊆  ( Base ‘ 𝑀 )  →  ( 𝑎  ∈  𝐵  →  𝑎  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 30 |  | ssel | ⊢ ( 𝐵  ⊆  ( Base ‘ 𝑀 )  →  ( 𝑏  ∈  𝐵  →  𝑏  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 31 | 29 30 | anim12d | ⊢ ( 𝐵  ⊆  ( Base ‘ 𝑀 )  →  ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) ) ) ) | 
						
							| 32 | 28 31 | ax-mp | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 34 |  | snex | ⊢ { 𝐼 }  ∈  V | 
						
							| 35 |  | ovex | ⊢ ( 0 ..^ 𝑁 )  ∈  V | 
						
							| 36 |  | snex | ⊢ { ( 𝐺 ‘ 𝑛 ) }  ∈  V | 
						
							| 37 | 35 36 | iunex | ⊢ ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) }  ∈  V | 
						
							| 38 | 34 37 | unex | ⊢ ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } )  ∈  V | 
						
							| 39 | 5 38 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 40 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 41 | 6 40 | ressplusg | ⊢ ( 𝐵  ∈  V  →  ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 42 | 39 41 | ax-mp | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑆 ) | 
						
							| 43 | 42 | eqcomi | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑀 ) | 
						
							| 44 | 1 33 43 | efmndov | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  =  ( 𝑎  ∘  𝑏 ) ) | 
						
							| 45 | 44 | eqeq1d | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) )  →  ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏  ↔  ( 𝑎  ∘  𝑏 )  =  𝑏 ) ) | 
						
							| 46 | 43 | oveqi | ⊢ ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 ) | 
						
							| 47 | 1 33 40 | efmndov | ⊢ ( ( 𝑏  ∈  ( Base ‘ 𝑀 )  ∧  𝑎  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 )  =  ( 𝑏  ∘  𝑎 ) ) | 
						
							| 48 | 47 | ancoms | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑏 ( +g ‘ 𝑀 ) 𝑎 )  =  ( 𝑏  ∘  𝑎 ) ) | 
						
							| 49 | 46 48 | eqtrid | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) )  →  ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  ( 𝑏  ∘  𝑎 ) ) | 
						
							| 50 | 49 | eqeq1d | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) )  →  ( ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  𝑏  ↔  ( 𝑏  ∘  𝑎 )  =  𝑏 ) ) | 
						
							| 51 | 45 50 | anbi12d | ⊢ ( ( 𝑎  ∈  ( Base ‘ 𝑀 )  ∧  𝑏  ∈  ( Base ‘ 𝑀 ) )  →  ( ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  𝑏 )  ↔  ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 ) ) ) | 
						
							| 52 | 32 51 | syl | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  𝑏 )  ↔  ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 ) ) ) | 
						
							| 53 | 52 | ralbidva | ⊢ ( 𝑎  ∈  𝐵  →  ( ∀ 𝑏  ∈  𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  𝑏 )  ↔  ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 ) ) ) | 
						
							| 54 | 53 | rexbiia | ⊢ ( ∃ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  𝑏 )  ↔  ∃ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑎  ∘  𝑏 )  =  𝑏  ∧  ( 𝑏  ∘  𝑎 )  =  𝑏 ) ) | 
						
							| 55 | 27 54 | mpbir | ⊢ ∃ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  𝑏 ) | 
						
							| 56 | 1 2 3 4 5 6 | smndex1bas | ⊢ ( Base ‘ 𝑆 )  =  𝐵 | 
						
							| 57 | 56 | eqcomi | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 58 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 59 | 57 58 | ismnddef | ⊢ ( 𝑆  ∈  Mnd  ↔  ( 𝑆  ∈  Smgrp  ∧  ∃ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑆 ) 𝑎 )  =  𝑏 ) ) ) | 
						
							| 60 | 7 55 59 | mpbir2an | ⊢ 𝑆  ∈  Mnd |